Answer:
lower
Explanation:
The lower the value of the coefficient of friction, the lower the resistance to sliding.
The coefficient of friction is the ratio of the frictional force and the normal force pressing two surfaces in contact together.
U =
U is the coefficient of friction
F is the frictional force
N is the normal force
We see that coefficient of friction is directly proportional to frictional force.
Answer:
<em>Velocity is the rate at which the position changes</em>
<em>Velocity is the rate at which the position changesWhy do we need</em>
<em>Velocity is the rate at which the position changesWhy do we needVectors make it convenient to handle quantities going in different directions</em><em>.</em><em>.</em><em> </em>
Explanation:
Thank you!
What measures we can't answer without the measures
Answer:
The maximum speed that the truck can have and still be stopped by the 100m road is the speed that it can go and be stopped at exactly 100m. Since there is no friction, this problem is similar to a projectile problem. You can think of the problem as being a ball tossed into the air except here you know the highest point and you are looking for the initial velocity needed to reach that point. Also, in this problem, because there is an incline, the value of the acceleration due to gravity is not simply g; it is the component of gravity acting parallel to the incline. Since we are working parallel to the plane, also keep in mind that the highest point is given in the problem as 100m. Solving for the initial velocity needed to have the truck stop after 100m, you should find that the maximum velocity the truck can have and be stopped by the road is 18.5 m/s.
Explanation:
It moved from 0 cm to 4 cm at a constant speed of 1 cm/s.