Answer:
55 ft/s
Explanation:
A₁ = Area of rectangular cross-section at input side = 1.5 x 11 = 16.5 ft²
A₂ = Area of rectangular cross-section at far end = 1.5 x 6 = 9 ft²
v₁ = speed of water at the input side of channel = 30 ft/s
v₂ = speed of water at the input side of channel = ?
Using equation of continuity
A₁ v₁ = A₂ v₂
(16.5) (30) = (9) v₂
v₂ = 55 ft/s
Answer:
The quantity of energy per photon is inversely proportional to the wavelength of the light.
Explanation:
Energy of light is given as
E = hf
where E = energy of the photons,
f = frequency of the light
If the number of photons = n
(E/n) = (h/n) f
Let (E/n) = E'
(h/n) = h'
But the frequency of light is related to wavelength through the relation
v = fλ
where v = speed of light = c
λ = wavelength of light
f = (c/λ)
E' = h' f
Substituting for f
E' = h' (c/λ)
h' and c are both constants, h'×c = K
E' = (K/λ)
So, the quantity of energy per photon is inversely proportional to the wavelength of the light.
Hope this Helps!!!
Answer:
The longest wavelength of radiation that passesses the necessary energy for breaking the Cl- Cl bond (in Cl2) is approximately 494.2 nm, which corresponds to the visible spectrum.
Explanation:
In order to answer this question we need to recall that the energy of a photon is given by:
E = hc/lambda, where
E = energy
h = Planck's constant
c = speed of light in vacuum
lambda = associated photon wavelength
In order to perform the calculations, first we need to change the units of 242kJ/mol to J. For doing this, we to divide by Avogadro's number and multiply by a 1000:
242kJ/mol = (242kJ/mol)*(1mol/6.022x10^23 particles)*(1000J/1kJ)= 4.0186x10^-19 J
Now, we simply solve for lambda and substitute the appropriate values in the energy equation:
lambda = hc/E = (6.626x10^-34 J s)*(3x10^8 m/s)/(4.0186x10^-19 J) = (1.986x10^-25 J m)/(4.0186x10^-19 J) = 4.942x10^-7 m = 494.2x10^-9 m = 494.2 nm
Therefore, the wavelength for a photon to break the Cl-Cl bond in a Cl2 molecule should be 494.2 nm at most, which corresponds to the visible spectrum (The visible spectrum includes wavelengths between 400 nm and 750 nm).
The way I see it, depending on what the number represents, the number in the decimals spot could mean something significant. hope this helps :)