The period of oscillation is T = 2 * pi * sqrt ( ( m2/3 + m1) / k )
<h3>What is period of oscillation?</h3>
This is the time in seconds it takes to complete one oscillation. where an oscillation is a repetitive to and fro motion. period if the inverse of frequency and both are basic when calculation motion in simple harmonic motion.
The period of oscillation is given as T
T = 2 * pi * sqrt ( m / k )
where
m = mass on this case mass of the spring will be inclusive to the mass of the block such that we have:
m1 = mass of the block
m2 = mass pf the spring
k = force constant of the spring
including the two masses to the period gives
T = 2 * pi * sqrt ( ( m2/3 + m1) / k )
Read more on period of oscillation here: brainly.com/question/22499336
#SPJ4
A path of inferences guided to be cherry picked as for which ones were reasonable and which ones had no ability in the real world to sustain in scientific law
Answer:
The wavelength can always be determined by measuring the distance between any two corresponding points on adjacent waves. In the case of a longitudinal wave, a wavelength measurement is made by measuring the distance from a compression to the next compression or from a rarefaction to the next rarefaction.
Explanation:
Answer:
Coriolis Effect
Explanation:
The Coriolis effect is responsible for the deflection of winds to the right in the Northern hemisphere and to the right in the Southern hemisphere. It is an effect that occurs because of the rotation of the earth around its axis.
The implication of this is that in areas of low pressure in the Northern hemisphere, winds tend to blow in anticlockwise direction, and in areas of high pressure, it blows in a clockwise direction. The opposite of this happens in the Southern hemisphere.