Tangential acceleration of a point on the rim of the flywheel during this spin-up process is 0.2548 m/s².
Tangential acceleration is defined as the rate of change of tangential velocity of the matter in the circular path.
Given,
Radius of flywheel (r) = 1.96 cm = 0.0196m
Angular acceleration (α)= 13.0 rad/s²
The tangential acceleration formula is at=rα
where, α is the angular acceleration, and r is the radius of the circle.
using the formula; at=rα = (13.0 rad/s²) (0.0196m) = 0.2548 m/s².
The tangential acceleration is 0.2548 m/s².
Learn more about the Tangential acceleration with the help of the following link:
brainly.com/question/15743294
#SPJ4
The given problem can be exemplified in the following diagram:
Since there is no friction or any other external force, the only force acting in the direction of the movement is the component of the weight of the block, therefore, applying Newton's second law:

Replacing the values:

We may cancel out the mass:

Using the gravity constant as 9.8 meters per square second:

Solving the operations:

Therefore, the acceleration is 6.3 meters per square second.
Answer:
Vy = V0 sin 38 where Vy is the initial vertical velocity
The ball will accelerate downwards (until it lands)
Note the signs involved if Vy is positive then g must be negative
The acceleration is constant until the ball lands
t (upwards) = (0 - Vy) / -g = Vy / g final velocity = 0
t(downwards = (-Vy - 0) / -g = Vy / g final velocity = -Vy
time upwards = time downwards (conservation laws)
An electric generator is a device that converts mechanical energy obtained from an external source into electrical energy as the output.
It is important to understand that a generator does not actually ‘create’ electrical energy. Instead, it uses the mechanical energy supplied to it to force the movement of electric charges present in the wire of its windings through an external electric circuit. This flow of electric charges constitutes the output electric current supplied by the generator. This mechanism can be understood by considering the generator to be analogous to a water pump, which causes the flow of water but does not actually ‘create’ the water flowing through it.
The modern-day generator works on the principle of electromagnetic induction discovered by Michael Faraday in 1831-32. Faraday discovered that the above flow of electric charges could be induced by moving an electrical conductor, such as a wire that contains electric charges, in a magnetic field. This movement creates a voltage difference between the two ends of the wire or electrical conductor, which in turn causes the electric charges to flow, thus generating electric current.