The general formula for alkenes is CnH2n, the formula with hydrogen count double the carbon count should be the correct formula for alkene and that is d. C3H6.
What are alkenes?
Alkenes, commonly known as olefins, are organic unsaturated hydrocarbons that have one or more carbon-carbon double bonds in their chemical structure and are composed of carbon and hydrogen atoms.
Alkenes are unsaturated hydrocarbons with a double bond between the carbon atoms. Carbon atoms are connected by at least one double bond. The general formula for alkenes is C n H 2n. Olefin is frequently substituted with alkenes. The word "olefin" comes from the Greek phrase "olefin gas," which denotes the production of oil.
<u>Since, their general formula is CnH2n, the formula with hydrogen count double the carbon count should be the correct formula for alkene and that is d. C3H6.</u>
To learn more about alkenes from the given link below,
brainly.com/question/27179090
#SPJ4
Answer:
1. pH = 1.23.
2. 
Explanation:
Hello!
1. In this case, for the ionization of H2C2O4, we can write:

It means, that if it is forming a buffer solution with its conjugate base in the form of KHC2O4, we can compute the pH based on the Henderson-Hasselbach equation:
![pH=pKa+log(\frac{[base]}{[acid]} )](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29)
Whereas the pKa is:

The concentration of the base is 0.347 M and the concentration of the acid is 0.347 M as well, as seen on the statement; thus, the pH is:

2. Now, since the addition of KOH directly consumes 0.070 moles of acid, we can compute the remaining moles as follows:

It means that the acid remains in excess yet more base is yielded due to the effect of the OH ions provided by the KOH; therefore, the undergone chemical reaction is:

Which is also shown in net ionic notation.
Best regards!
Answer:
PbMg
Explanation:
Because they both have a charge of 2+, they can be reduced and cancel each other out because 2 and 2 can be reduced to 1
Answer:
No, there is no evidence that the manufacturer has a problem with underfilled or overfilled bottles, due that according our results we cannot reject the null hypothesis.
Explanation:
according to this exercise we have the following:
σ^2 =< 0.01 (null hypothesis)
σ^2 > 0.01 (alternative hypothesis)
To solve we can use the chi-square statistical test. To reject or not the hypothesis, we have that the rejection region X^2 > 30.14
Thus:
X^2 = ((n-1) * s^2)/σ^2 = ((20-1)*0.0153)/0.01 = 29.1
Since 29.1 < 30.14, we cannot reject the null hypothesis.