Answer:
a group of organs working together to perform a function.
Explanation:
<h2>
Answers:</h2>
-The first direct detection of gravitational waves came in 2015
-The existence of gravitational waves is predicted by Einstein's general theory of relativity
-Gravitational waves carry energy away from their sources of emission
<h2>
Explanation:</h2>
Gravitational waves were discovered (theoretically) by Albert Einstein in 1916 and "observed" for the first time in direct form in 2015 (although the results were published in 2016).
These gravitational waves are fluctuations or disturbances of space-time produced by a massive accelerated body, modifying the distances and the dimensions of objects in an imperceptible way.
In this context, an excellent example is the system of two neutron stars that orbit high speeds, producing a deformation that propagates like a wave,<u> in the same way as when a stone is thrown into the water</u>. So, in this sense, gravitational waves carry energy away from their sources
.
Therefore, the correct options are D, E and F.
Answer:
liquid a particles slides past pother
Explanation:
mark brainliest :))
Answer:
v=115 m/s
or
v=414 km/h
Explanation:
Given data

To find
Terminal velocity (in meters per second and kilometers per hour)
Solution
At terminal speed the weight equal the drag force

For speed in km/h(kilometers per hour)
To convert m/s to km/h you need to multiply the speed value by 3.6
Answer:
Explanation:
The strengthcompassion field is proportional to the closeness of the field lines—more precisely, it is proportional to the number of lines per unit area perpendicular to the lines. The direction of the electric field is tangent to the field line at any point in space. Field lines can never cross. These pattern of lines, sometimes referred to as electric field lines, point in the direction that a positive test charge would accelerate if placed upon the line. As such, the lines are directed away from positively charged source charges and toward negatively charged source charges.
Rules for drawing electric field lines
1. Electric field lines are always drawn from High potential to
low potential.
2. Two electric field lines can never intersect each other.
3. The net electric field inside a Conductor is Zero.
4. Electric field line from a positive charge is drawn radially outwards and from a negative charge radially inwards.
5. The density of electric field lines tells the strength of the electric field at that region.
6. Electric field lines terminate Perpendicularly to the surface of a conductor.
A vector quantity has a direction and a magnitude, while a scalar has only a magnitude. You can tell if a quantity is a vector by whether or not it has a direction associated with it.
So, electric fields are vector quantity due to the fact any student can tell you that a compass is used to determine which direction is north.
Since the compass always point northward, then it has a direction and magnitude and so it is a vector quantity