If you're looking for distance, you have to multiply the time and speed.
0.75 × 45 = 33.75
The rabbit hopped 33.75 m.
Answer:
A satellite on non-equatorial orbit would show daily motion even if its period is exactly 1 sidereal day.
Explanation:
Extinct<span> might be a word you associate with animals that lived long ago, like the dinosaurs, but did you know that over 18,000 species are classified as "threatened" (susceptible to extinction) today? Scientists involved in wildlife conservation have a tough job; they are in charge of determining what needs to be done to prevent a species from becoming extinct. Habitat, food supply, and impacts of local human populations are just a few of the factors these scientists take into account. It is a lot to keep track of for a single location, but the job becomes even harder when it is a migratory animal. In this science project, you will get a firsthand look at their job. You will access </span>real<span> data about migratory birds and use satellite images to analyze their habitats, then come up with a conservation plan to protect the species from extinction.</span>
Answer:
The weight lifter would not get past this sticking point.
Explanation:
Generally torque applied on the weight is mathematically represented as
T = F z
To obtain Elbow torque we substitute 4000 N for F (the force ) and 2cm
for z the perpendicular distance
So Elbow Torque is 

To obtain the torque required we substitute 300 N for F and 30cm 
So the Required Torque is 

Now since
it mean that the weight lifter would not get past this sticking point
Answer:
22.5 m
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 30 m/s
Time (t) = 1.5 s
Final velocity (v) = 0 m/s
Distance (s) =?
The distance to which the car move before stopping from the time the driver applied the brake can be obtained as follow:
s = (u + v)t/2
s = (30 + 0)1.5 / 2
s = (30 × 1.5) / 2
s = 45 / 2
s = 22.5 m
Thus, the car will move to a distance of 22.5 m before stopping from the time the driver applied the brake.