the ideal gas equation is PV=nRT
where P=pressure
V=Volume
n=no. of moles
R=universal gas constant
T=temperature
The universal gas constant (R) is 0.0821 L*atm/mol*K
a pressure of 746 mmhg =0.98 atm= 1 atm (approx)
T=37 degrees Celsius =37+273=310 K (convert it to Kelvin by adding 273)
V=0.7 L (only getting oxygen, get 21% of 3.3L)
Solution:
(1 atm)(0.7 L)=n(0.0821 L*atm/mol*K)(310 K)
0.7 L*atm=n(25.451 L*atm/mol)
n=0.0275 mole
Answer:
n=0.0275 mole of oxygen in the lungs.
Answer:
Market economies are characterized by their free markets. Examples are the United States and the United Kingdom.
- That's pretty clear. What it means is that they trust in the free market and its operation to answer the questions of what to produce, how much to produce, and for whom.
Command economies are characterized by their control of markets. Examples are China and North Korea.
- They rely on the government, <em>not the free market itself, </em>to control what should be produced. This makes for a more strict system that can pay off in the long run, but can also run the risk of being heavy-handed.
Answer:
When the volume will be reduced to 2.50 L, the temperature will be reduced to a temperature of 230.9K
Explanation:
Step 1: Data given
A sample of sulfur hexafluoride gas occupies a volume of 5.10 L
Temperature = 198 °C = 471 K
The volume will be reduced to 2.50 L
Step 2 Calculate the new temperature via Charles' law
V1/T2 = V2/T2
⇒with V1 = the initial volume of sulfur hexafluoride gas = 5.10 L
⇒with T1 = the initial temperature of sulfur hexafluoride gas = 471 K
⇒with V2 = the reduced volume of the gas = 2.50 L
⇒with T2 = the new temperature = TO BE DETERMINED
5.10 L / 471 K = 2.50 L / T2
T2 = 2.50 L / (5.10 L / 471 K)
T2 = 230.9 K = -42.1
When the volume will be reduced to 2.50 L, the temperature will be reduced to a temperature of 230.9K
Answer:
The rate is a mathematical relationship obtained by comparing reaction rate with reactant concentrations.