Answer:
The answer to your question is below
Step-by-step explanation:
Question 1
x = 5 Equation l
2x + y = 10 Equation ll
- Substitute Equation l in equation ll
2(5) + y = 10
y = 10 - 10
y = 0
- Solution (5, 0)
Question 2
x + 16y = 20 Equation l
x = 4y Equation ll
Substitute equation ll in equation l
4y + 16y = 20
20y = 20
y = 20/20
y = 1
-Find x
x = 4(1)
x = 4
-Solution
(4, 1)
Question 3
2x + 8y = 20 Equation l
x = 2 Equation ll
-Substitute equation ll in equation l
2(2) + 8y = 20
4 + 8y = 20
8y = 20 - 4
8y = 16
y = 16/8
y = 2
- Solution
(2, 2)
<u>Finding x:</u>
We know that the diagonals of a rhombus bisect its angles
So, since US is a diagonal of the given rhombus:
∠RUS = ∠TUS
10x - 23 = 3x + 19 [replacing the given values of the angles]
7x - 23 = 19 [subtracting 3x from both sides]
7x = 42 [adding 23 on both sides]
x = 6 [dividing both sides by 7]
<u>Finding ∠RUT:</u>
We can see that:
∠RUT = ∠RUS + ∠TUS
<em>Since we are given the values of ∠RUS and ∠TUS:</em>
∠RUT = (10x - 23) + (3x + 19)
∠RUT = 13x - 4
<em>We know that x = 6:</em>
∠RUT = 13(6)- 4
∠RUT = 74°
J ---- P --- K
JP = 2x
PK = 7x
JK = 27
2x + 7x = 27
9x = 27
x = 27/9
x = 3
The value of P is 3.
JP = 2x = 2(3) = 6
PK = 7x = 7(3) = 21
Answer:
Is =-61 part of the question
Step-by-step explanation: