Answer:
This metal could be the aluminium with a specific heat of 
Explanation:
A pie of unknown metal presents a mass (M) of 348 g. This metal is heated using energy (E) of 6.64 kJ and the temperature increases from T1 =24.4 to T2 =43.6°C. We can calculate the specific heat (H) of this metal as follows

We can replace previously presented data in this equation. After simplifying and converting to adequated units, we found that

Finally, the specific heat of this metal is

The aluminium could be the metal, its specific heat is similar to that found in this problem.
Finally, we can conclude that this metal could be the aluminium with a specific heat of 
To give 33.6 dm³ hydrogen gas at STP, 18.06 x 10²³ atoms of Na must react completely.
<h3>What is Mole concept ?</h3>
A mole is a unit of measurement used to measure the amount of any fundamental entity (atoms, molecules, ions) present in the substance.
As according to the given equation, 2 moles (ie 12.04 x 10²³ atoms) of Na-atoms produces 1 mole (22.4 ltr) of H₂-gas.
Hence, to produce 33.6 ltr (equivalent to 33.6 dm³) of H₂-gas produced by ;
= 12.04 x 10²³ atoms of Na / 22.4 ltr of H₂-gas x 33.6 ltr
= 18.06 x 10²³ atoms of Na
Hence, To give 33.6 dm³ hydrogen gas at STP, 18.06 x 10²³ atoms of Na must react completely.
Learn more about Mole concept here ;
brainly.com/question/20483253
#SPJ1
Answer:
c) NOx and VOC
oxides of nitrogen (NOx) and volatile organic compounds (VOC)
Explanation:
-
Answer:
Repulsive forces exist only when atoms are very close to each other. (3/14) "They [the atoms] will approach until both nuclei will simply shove each other because both of them are positive." The balance between the attraction and repulsion forces determines how close the atoms can get. The relationships between the magnitude and direction of repulsive and attractive forces. A stable state of a bond is when attractive forces balance repulsion forces. “A stable state between two atoms is when they attract each other with a force that equals the force that they repel each other.”