Answer:
Rubidium-85=61.2
Rubidium-87=24.36
Atomic Mass=85.56 amu
Explanation:
To find the atomic mass, we must multiply the masses of the isotope by the percent abundance, then add.
<u>Rubidium-85 </u>
This isotope has an abundance of 72%.
Convert 72% to a decimal. Divide by 100 or move the decimal two places to the left.
- 72/100= 0.72 or 72.0 --> 7.2 ---> 0.72
Multiply the mass of the isotope, which is 85, by the abundance as a decimal.
- mass * decimal abundance= 85* 0.72= 61.2
Rubidium-85=61.2
<u>Rubidium-87</u>
This isotope has an abundance of 28%.
Convert 28% to a decimal. Divide by 100 or move the decimal two places to the left.
- 28/100= 0.28 or 28.0 --> 2.8 ---> 0.28
Multiply the mass of the isotope, which is 87, by the abundance as a decimal.
- mass * decimal abundance= 87* 0.28= 24.36
Rubidium-87=24.36
<u>Atomic Mass of Rubidium:</u>
Add the two numbers together.
- Rb-85 (61.2) and Rb-87 (24.36)
Answer:
Calcium sulphate is the right answer for this question.
It is because calcium sulphate helps to obtain the hardness in water. hardness.
The presence of this resource is a main reason for permanent hardness.
Hard drinking water has moderate health benefits, but can pose serious problems for the industrial settings.
Explanation:
Answer:
I think it will option B it will retain enough heat
Answer:
41.3kJ of heat is absorbed
Explanation:
Based in the reaction:
Fe₃O₄(s) + 4H₂(g) → 3Fe(s) + 4H₂O(g) ΔH = 151kJ
<em>1 mole of Fe3O4 reacts with 4 moles of H₂, 151kJ are absorbed.</em>
63.4g of Fe₃O₄ (Molar mass: 231.533g/mol) are:
63.4g Fe₃O₄ × (1mol / 231.533g) = <em>0.274moles of Fe₃O₄</em>
These are the moles of Fe₃O₄ that react. As 1 mole of Fe₃O₄ in reaction absorb 151kJ, 0.274moles absorb:
0.274moles of Fe₃O₄ × (151kJ / 1 mole Fe₃O₄) =
<h3>41.3kJ of heat is absorbed</h3>
<em />
5.6L of O2 means we have 0.25 moles of O2.
As, 1 mole has 6.023*10^23 molecules,
0.25 moles of O2 will have 0.25*6.023*10^23 molecules=1.50575*10^23 molecules
and as 1 molecule of O2 has 2 atoms, so, 1.50575*10^23 molecules will have 2*1.50575*10^23 atoms=3.0115*10^23 atoms of O.