1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timama [110]
2 years ago
8

2. The speaker argues that more data allow us to see new things. Think about your favorite hobby—skateboarding, listening to mus

ic, or whatever you most enjoy doing. What kinds of insights could big data provide about your hobby? How might these insights make things better for you? Are there any ways that big data could make your hobby worse? HELPPP MY FAVORITE HOBBY IS MUSIC
Engineering
2 answers:
taurus [48]2 years ago
5 0

Answer:

If we have more data or information when it comes to listening to music, we can easily find out who made the song or then the song was released or we can see when that songwriter will release a new hit.

Explanation:

m_a_m_a [10]2 years ago
5 0

Answer:

Explanation: if we had more information when we listen to music like the name of the singer or the writer or the name of the song we can easily find out who made the song when they release a new song

You might be interested in
Consider an area-source box model for air pollution above a peninsula of land. The length of the box is 15 km, its width is 80 k
In-s [12.5K]

Consider an area-source box model for air pollution above a peninsula of land. The length of the box is 15 km, its width is 80 km, and a radiation inversion restricts mixing to 15 m. Wind is blowing clean air into the long dimension of the box at 0.5 m/s. On average, there are 250,000 vehicles on the road, each being driven 40 km in 2 hours and each emitting 4 g/km of CO.

Required:

a. Estimate the steady-state concentration of CO in the air. Should the city be designated as "nonattainment" (i.e., steady-state concentration is over the NAAQS standard)?

b. Find the average rate of CO emissions during this two-hour period.

c. If the windspeed is zero, use the formula to derive relationship between CO and time and use it to find the CO over the peninsula at 6pmConsider an area-source box model for air pollution above a peninsula of land. The length of the box is 15 km, its width is 80 km, and a radiation inversion restricts mixing to 15 m. Wind is blowing clean air into the long dimension of the box at 0.5 m/s. On average, there are 250,000 vehicles on the road, each being driven 40 km in 2 hours and each emitting 4 g/km of CO.

Required:

a. Estimate the steady-state concentration of CO in the air. Should the city be designated as "nonattainment" (i.e., steady-state concentration is over the NAAQS standard)?

b. Find the average rate of CO emissions during this two-hour period.

c. If the windspeed is zero, use the formula to derive relationship between CO and time and use it to find the CO over the peninsula at 6pmConsider an area-source box model for air pollution above a peninsula of land. The length of the box is 15 km, its width is 80 km, and a radiation inversion restricts mixing to 15 m. Wind is blowing clean air into the long dimension of the box at 0.5 m/s. On average, there are 250,000 vehicles on the road, each being driven 40 km in 2 hours and each emitting 4 g/km of CO.

Required:

a. Estimate the steady-state concentration of CO in the air. Should the city be designated as "nonattainment" (i.e., steady-state concentration is over the NAAQS standard)?

b. Find the average rate of CO emissions during this two-hour period.

c. If the windspeed is zero, use the formula to derive relationship between CO and time and use it to find the CO over the peninsula at 6pm

<em><u>p</u></em><em><u>lease</u></em><em><u> mark</u></em><em><u> me</u></em><em><u> as</u></em><em><u> brainliest</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>

<em><u>f</u></em><em><u>ollow</u></em><em><u> me</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>,</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>

3 0
3 years ago
Two Technicians are discussing ShopKey Pro. Technician
Leno4ka [110]

Answer:

Technician B

Explanation:

i took he test already

6 0
3 years ago
When would working with machinery be a common type of caught-in and caught-between<br> hazard?
tigry1 [53]

Answer:

A working with machinery be a common type of caught-in and caught-between  hazard is described below in complete detail.

Explanation:

“Caught in-between” accidents kill mechanics in a variety of techniques. These incorporate cave-ins and other hazards of tunneling activity; body parts extracted into unconscious machinery; reaching within the swing range of cranes and other installation material; caught between machine & fixed objects.

6 0
3 years ago
Water is boiled in a pot covered with a loosely fitting lid at a location where the pressure is 85.4 kPa. A 2.61 kW resistance h
eimsori [14]

Answer:

t = 6179.1 s = 102.9 min = 1.7 h

Explanation:

The energy provided by the resistance heater must be equal to the energy required to boil the water:

E = ΔQ

ηPt = mH

where.

η = efficiency = 84.5 % = 0.845

P = Power = 2.61 KW = 2610 W

t = time = ?

m = mass of water = 6.03 kg

H = Latent heat of vaporization of water = 2.26 x 10⁶ J/kg

Therefore,

(0.845)(2610 W)t = (6.03 kg)(2.26 x 10⁶ J/kg)

t = \frac{1.362\ x\ 10^7\ J}{2205.45\ W}

<u>t = 6179.1 s = 102.9 min = 1.7 h</u>

4 0
2 years ago
I want a real answer to this, not just take my points
faust18 [17]

The reason you dream about him is because you continuously think about him, maybe even before falling asleep.

7 0
2 years ago
Other questions:
  • A tire-pressure monitoring system warns you with a dashboard alert when one of your car tires is significantly under-inflated.
    6·1 answer
  • Air enters a horizontal, constant-diameter heating duct operating at steady state at 290 K, 1 bar, with a volumetric flow rate o
    15·2 answers
  • Pine Valley Furniture wants to use Internet systems to provide value to its customers and staff. There are many software technol
    5·1 answer
  • Your manager has asked you to research and recommend a writing guide that examiners in your digital forensics company can use fo
    8·1 answer
  • Design an Armstrong indirect FM modulator to generate an FM signal with a carrier frequency 98.1 MHz and a frequency deviation △
    15·1 answer
  • WHAT IS THE EFFECT OF ICE ACCRETION ON THE LONGITUDINAL STABILITY OF AN AIRCRAFT?
    8·1 answer
  • : A cyclical load of 1500 lb is to be exerted at the end of a 10 in. long aluminium beam (see Figure below). The bar must surviv
    6·1 answer
  • How long does it take to get a master's degree in Mechanical engineering?
    12·1 answer
  • Draw the free-body diagram of the beam which supports the 80-kg load and is supported by the
    12·1 answer
  • In the engineering design and prototyping process, what is the advantage of drawings and symbols over written descriptions?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!