Answer:
m = 4.5021 kg
Explanation:
given,
Apparent mass of aluminium = 4.5 kg
density of air = 1.29 kg/m³
density of aluminium = 2.7 x 10⁷ kg/m³
true mass of the aluminium = ?
Weight in Vacuum
W = m g
W = ρV g
Air buoyancy acting on aluminium
B = ρ₀V g
Volume is the same in both cases since the volume of the aluminum
displaces an equal amount of volume air.
Apparent weight:
ρV g − ρ₀V g = 4.5 g
ρV − ρ₀V = 4.5

m = ρV


m = 4.5021 kg
Answer:
w=255
Explanation:
The change in internal energy is given by the first law:
ΔE = Q - w
where ΔE is the change in internal energy of the system
q is the heat added to the system
w is the work done *by* the system on the surroundings
So, for the first phase of this process:
ΔE = Q - w
Q=160J
w=309J
ΔE = 160J - 309J = -149J
To bring the system back to its initial state after this, the internal energy must change by +149J (the system myst gain back the 149 J of energy it lost). We are told that the system loses 106 J of heat in returning to its initial state, so the work involved is given by:
ΔE = Q - w
+149J = -106J - w
255J = -w
w = -255J
Answer:
The solute fully dissolves in the solvent
Explanation:
This is because for a solution to be called a homogeneous mixture, all the solute must be dissolved in the solvent, without the particles of the solute being visible in the solvent.
Answer:
Emf induced i equal to 329.4 volt
Explanation:
Note : Here i think we have to find emf induced in the coil
Number of turns in the coil N= 180
Sides of square d = 30 cm = 0.3 m
So area of the square 
Magnetic field is changes from 0 to 1.22 T
Therefore 
Time interval in changing the magnetic field dt = 0.06 sec
Induced emf is given by


Answer:

Explanation:
Given:
- change in stiffness constant of the spring on replacing the original springs,

- mass of the car,

- initial length of the original car-spring before compression,

- final length of the original car-spring after compression,

So, weight of the car:



<u>Now the spring constant of original spring:</u>
(since 4 springs are in parallel)


<u>So the stiffness constant of the new springs:</u>



<u>Now the height lowered:</u>
(since 4 springs are in parallel)
