In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.
Answer:
The slope of a position-time graph can be calculated as:

where
is the increment in the y-variable
is the increment in the x-variable
We can verify that the slope of this graph is actually equal to the velocity. In fact:
corresponds to the change in position, so it is the displacement, 
corresponds to the change in time
, so the time interval
Therefore the slope of the graph is equal to

which corresponds to the definition of velocity.
Inertia is the property of an object that basically describes its resistance to change its state of motion.
For instance, if an object is still, inertia describes the "attitude" of the object to stay still (a force should be applied in order to move it). Similarly, if an object is moving by uniform motion (with constant speed), inertia refers to the "attitude" of the object to keep its uniform motion (again, a force should be applied to the object in order to change this state of motion).
Answer:
The answer is: c.) Both students get the same time constant, since the time constant does not depend on the charge on the capacitor
Explanation:
Both students, because the time constant is not dependent on the capacitor charge. We can express the equation of the time constant as follows:
Time constant = RC
In this equation it is observed that the time constant is equal to the multiplication of the resistance (R) multiplied by the capacitance (C)