<h3>
Answer:</h3>
5.71 × 10² nm
<h3>
Explanation:</h3>
The product of wavelength and frequency of a wave gives the speed of the wave.
Therefore;
Velocity of wave = Wavelength × Frequency
c = f ×λ
In our case;
Frequency = 5.25 × 10^14 Hz
Speed of light = 2.998 × 10^8m/s
But;
λ = c ÷ f
= 2.998 × 10^8m/s ÷ 5.25 × 10^14 Hz
= 5.71 × 10^-7 m
But; 1 M = 10^9 nm
Therefore;
wavelength = 5.71 × 10^-7 × 10^9
= 5.71 × 10² nm
The wavelength of light wave 5.71 × 10² nm
The given chemical reaction given above is already balanced such that the number of atoms in the left hand side of the equation is equal to that of the right hand side. Using the dimensional analysis, proper conversion factors and the molar masses,
mass of nitrogen = (0.129 g H₂)(1 mol H₂/2 g H₂)(1 mol N₂/3 mol H₂)(28 g N₂/1 mol N₂)
mass of nitrogen = 0.602 g N₂
Therefore, 0.602 g of nitrogen will be required for he reaction.
Answer:
Nice and you
Explanation:
Please Mark me brainliest
Answer:
Non competitive inhibition
Explanation:
Hello,
During enzymatic catalysis, the active sites could be occupied by the very same products' molecules turning out into an inhibition (the reaction starts to slow down since to active places are available for the reagents to react). Nonetheless this inhibition is not competitive as long as the product does not react due to the active sites it is occupying.
Best regards.
Answer: Option (B) is the correct answer.
Explanation:
It is known that for writing a chemical reaction equation, reactants are written on left hand side whereas products are written on right hand side.
And in between reactants and products a forward arrow is placed pointing towards the products.
Therefore, the reaction for carbon burns in the presence of oxygen to give carbon dioxide will be written as follows.

Here, carbon and oxygen atoms are the reactants whereas carbon dioxide is the product.