1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kay [80]
2 years ago
15

A 64-kg skater initially at rest throws a 4.0-kg medicine ball horizontally to the left. Suppose the ball is accelerated through

a distance of 1.0 mm before leaving the skater's hand at a speed of 7.0 m/s. Assume the skater and the ball to be point-like and the surface to be frictionless and ignore air resistance. Use a vertical y-axis with the positive direction pointing up and a horizontal x-axis with the positive direction pointing to the right.
Required:
a. Determine the acceleration of the ball during the throw.
b. Determine the acceleration of the skater during the throw.
Physics
2 answers:
maxonik [38]2 years ago
7 0

Explanation:

64-kg skater initially at rest throws a 4.0-kg medicine ball horizontally to the left. Suppose the ball is accelerated through a distance of 1.0 mm before leaving the skater's hand at a speed of 7.0 m/s. Assume the skater and the ball to be point-like and the surface to be frictionless and ignore air resistance. Use a vertical y-axis with the positive direction pointing up and a horizontal x-axis with the positive direction pointing to the right.

Required:

a. Determine the acceleration of the ball during the throw.

b. Determine the acceleration of the skater during the throw.

vlabodo [156]2 years ago
6 0

Answer:

yeah

Explanation:

Solved: Problem 2.41 A 64-kg Skater Initially At Rest Thro ...www.chegg.com › ... › physics questions and answers

Suppose The Ball Is Accelerated Through A Distance Of 1.0 M Before Leaving The Skater's Hand At A Speed Of 7.0 M/s . Assume The Skater And The Ball To Be Point-like, The Surface To Be Frictionless, And Ignore Air Resistance. Use A ... A 64-kg skater initially at rest throws a 5.0-kg medicine ball horizontally to the left

You might be interested in
An 20-cm-long Bicycle Crank Arm. With A Pedal At One End. Is Attached To A 25-cm-diameter Sprocket, The Toothed Disk Around Whic
malfutka [58]

To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.

The angular velocity can be described as

\omega_f = \omega_0 + \alpha t

Where,

\omega_f =Final Angular Velocity

\omega_0 =Initial Angular velocity

\alpha = Angular acceleration

t = time

The relation between the tangential acceleration is given as,

a = \alpha r

where,

r = radius.

PART A ) Using our values and replacing at the previous equation we have that

\omega_f = (94rpm)(\frac{2\pi rad}{60s})= 9.8436rad/s

\omega_0 = 63rpm(\frac{2\pi rad}{60s})= 6.5973rad/s

t = 11s

Replacing the previous equation with our values we have,

\omega_f = \omega_0 + \alpha t

9.8436 = 6.5973 + \alpha (11)

\alpha = \frac{9.8436- 6.5973}{11}

\alpha = 0.295rad/s^2

The tangential velocity then would be,

a = \alpha r

a = (0.295)(0.2)

a = 0.059m/s^2

Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation

\omega_f^2=\omega_0^2+2\alpha\theta

Replacing with our values and re-arrange to find \theta,

\theta = \frac{\omega_f^2-\omega_0^2}{2\alpha}

\theta = \frac{9.8436^2-6.5973^2}{2*0.295}

\theta = 90.461rad

That is equal in revolution to

\theta = 90.461rad(\frac{1rev}{2\pi rad}) = 14.397rev

The linear displacement of the system is,

x = \theta*(2\pi*r)

x = 14.397*(2\pi*\frac{0.25}{2})

x = 11.3m

5 0
3 years ago
Kinetic energy is greatest when a roller coaster
mr Goodwill [35]
Hey Dave... you need to learn and I want you to improve I believe it to be at the bottom of the hill. Please read your siht homie
5 0
3 years ago
a 3 kg piece of putty that is moving with a velocity of 10 m/s collides and sticks to an 8 kg bowling ball that was at rest. wha
defon

The final velocity is 2.7 m/s

Explanation:

We can solve this problem by using the principle of conservation of momentum: in fact, in absence of external forces, the total momentum of the system must be conserved before and after the collision.

Therefore we can write:

p_i = p_f\\m_1 u_1 + m_2 u_2 = (m_1+m_2)v  

where:  

m_1 = 3 kg is the mass of the putty

u_1 = 10 m/s is the initial velocity of the putty (we take its direction as positive direction)

m_2 = 8 kg is the mass of the ball

u_2 = 0 m/s is the initial velocity of the ball (at rest)

v is the final combined velocity of the two putty+ball

Re-arranging the equation and substituting the values, we find the  final combined velocity:

v=\frac{m_1 u_1 + m_2 u_2}{m_1+m_2}=\frac{(3)(10)+0}{3+8}=2.7 m/s

And the positive sign indicates their final direction is the same as the initial direction of the putty.

Learn more about momentum here:

brainly.com/question/7973509  

brainly.com/question/6573742  

brainly.com/question/2370982  

brainly.com/question/9484203  

#LearnwithBrainly

3 0
2 years ago
How do I solve such problem???
pashok25 [27]

As far as I'm concerned, this is a bogus question, or at least a severely corrupted one.

The three numbers given can NOT all be true on Earth.

-- It rolled off the table at 7.6 m/s .  By golly, there you are!  Its initial horizontal velocity is 7.6 m/s, and it has no vertical velocity until it leaves the table.

-- There are no horizontal forces that we're aware of acting on the object.  So it maintains the same horizontal velocity for the rest of the story.  It's 10.5m away from the table in (10.5 m) / (7.8 m/s) = 1.35 second .

-- Vertically, it's just an object dropped from 17.6m off the floor.  Shockingly, the distance it falls in time 'T' is (1/2 g) T².  In 1.35 second, that's 8.88 meters ! . . . only about halfway to the floor !

-- In order to fall 17.6 m to the floor, it would need 1.89 seconds.  In <u>that</u> length of time, however, it would travel (7.8 m/s) x (1.89 s) = 14.78 m away from the base of the table.

So you see, either . . .

-- the table is NOT 17.6m tall, or

-- the object does NOT roll off of the table at 7.8 m/s, or

-- it does NOT land 10.5 m away from the base of the table.

OR . . .

-- the table is not on Earth, and gravity is not 9.8 m/s² !

We often see questions posted on Brainly with not enough given information, OR with some information given that's not needed because it's not involved the answer.  

THIS one is different, and it's unusual.  In this one, we have<em> too much</em> given information, we can't ignore any of it because it's all related, but it's inconsistent and it CAN't all be true.

(Unless the whole story takes place on a mystery planet that is not Earth.  Which I'm not going to take the time and effort right now to figure out what the acceleration of gravity has to be in order to make all of the given information compatible.)

7 0
2 years ago
A ball is thrown vertically up from the edge of a cliff with a speed of 8 m/s, how high is
anygoal [31]

Explanation:

s=d/t

d=s×t

d=8×16.4

d=131.2

distance is 131.2m.

7 0
2 years ago
Other questions:
  • The froghopper, Philaenus spumarius, holds the world record for insect jumps. When leaping at an angle of 58.0° above the horizo
    12·1 answer
  • The natural force that causes you to lose power as you climb a hill is known as inertia.
    15·2 answers
  • This diagram shows the process that powers stars. This process is called?
    8·2 answers
  • When you jump off the earth, your momentum changes, but the Earth does not move. 1)If momentum is always conserved, why do we no
    8·1 answer
  • A projectile is launched with an initial velocity of 25 m/s at an angle of 30° above the horizontal. The projectile reaches maxi
    14·1 answer
  • If you want to know your speed going from point A to point B, what
    9·1 answer
  • A) A 5.00-kg squid initially at rest ejects 0.250 kg of fluid with a velocity of 10.0 m/s. What is the recoil velocity of the sq
    8·1 answer
  • What type of solar radiation does not reach the surface of the earth?
    6·1 answer
  • Two similar fans are operating in a room. Fan 1 makes a squeaking noise while running. Fan 2 is silent.
    5·2 answers
  • A block weighing 30kg is moved at a constant speed over a horizontal surface by a force of 100 N applied parallel
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!