The kinetic energy of the small ball before the collision is
KE = (1/2) (mass) (speed)²
= (1/2) (2 kg) (1.5 m/s)
= (1 kg) (2.25 m²/s²)
= 2.25 joules.
Now is a good time to review the Law of Conservation of Energy:
Energy is never created or destroyed.
If it seems that some energy disappeared,
it actually had to go somewhere.
And if it seems like some energy magically appeared,
it actually had to come from somewhere.
The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision. The large ball
and the small ball will just have to share the same 2.25 joules.
Answer:
liquid are close together with no regular arrangement. solid are tightly packed, usually in a regular pattern.
Ionic bonds are formed between a cation (metal) and an anion (nonmetal)
Probably because of the drag coefficient and the density of the liquid.
Given Information:
KEa = 9520 eV
KEb = 7060 eV
Electric potential = Va = -55 V
Electric potential = Vb = +27 V
Required Information:
Charge of the particle = q = ?
Answer:
Charge of the particle = +4.8x10⁻¹⁸ C
Explanation:
From the law of conservation of energy, we have
ΔKE = -qΔV
KEb - KEa = -q(Vb - Va)
-q = KEb - KEa/Vb - Va
-q = 7060 - 9520/27 - (-55)
-q = 7060 - 9520/27 + 55
-q = -2460/82
minus sign cancels out
q = 2460/82
Convert eV into Joules by multiplying it with 1.60x10⁻¹⁹
q = 2460(1.60x10⁻¹⁹)/82
q = +4.8x10⁻¹⁸ C