Answer:
A) Φ = 0
, B) T = 7.76 s
Explanation:
A) to find the value of the phase constant replace the value
0 = a sin (b (0- 0) + Φ)
0 = sin Φ
Φ = sin⁻¹ 0
Φ = 0
B) the period is defined by time or when the movement begins to repeat itself
So that the sine function is repeated when the angle passes 2pi
b (x- ct) = 2pi
If we are at a fixed point x = 0
b c t = 2pi
t = 2π / bc
Let's calculate
T = 2π / (33.05 245)
T = 7.76 s
By Newton's 2nd law of motion, F = ma, where F is force, m is mass, and a is acceleration.
Rearranging this equation to find acceleration would give us:
a = F/m
The horizontal force to the right is 10N, because the box is pushed to the right with a force of 20N, and the friction force of 10N opposes that, so:
20N - 10N = 10N
The mass is 2kg.
Putting these values into the equation gives us:
a = F/m
= 10/2
= 5ms^-2
The acceleration of the box is 5ms^-2
Simple machines could be used to reduce effort or extend the ability of people to perform tasks beyond their normal capabilities.
Examples include pulley, lever, and incline plane
Given parameters:
First velocity = 2.50m/s
Time of travel = 3s
Second velocity = 1.50m/s
Unknown:
The displacement during the first interval = ?
Velocity is the displacement of a body with time. Displacement is a distance move in a specific direction by a body.
Velocity = 
So;
Displacement = Velocity x Time taken
Now input the parameter for the first velocity and time of travel;
Displacement = 2.5 x 3 = 7.5m
The displacement id 7.5m
I assume that the force of 20 N is applied along the direction of motion and was applied for the whole 6 meters, the formula of work is this; Work = force * distance * cosθ where θ is zero degrees. Plugging in the data to the formula; Work = 20 N * 6 m * cos 0º.
Work = 20 N * 6 m * 1
Work = 120 Nm
Work = 120 joules
Hope this helps!