Answer:
799.54 ft
Explanation:
Linear thermal expansion is:
ΔL = α L₀ ΔT
where ΔL is the change in length,
α is the linear thermal expansion coefficient,
L₀ is the original length,
and ΔT is the change in temperature.
Given:
α = 1.2×10⁻⁵ / °C
L₀ = 800 ft
ΔT = -17°C − 31°C = -48°C
Find: ΔL
ΔL = (1.2×10⁻⁵ / °C) (800 ft) (-48°C)
ΔL = -0.4608
Rounded to two significant figures, the change in length is -0.46 ft.
Therefore, the final length is approximately 800 ft − 0.46 ft = 799.54 ft.
Answer:
Electric field on proton

Explanation:
Given that

We know that
Charge on proton

We know that
Force = Electric field x Charge
F= E x q



Electric field on proton

Statements that are true as regards exposure control plan and its updating are;
<em>Updates must have the reflection of changes in tasks as well in procedures.</em>
<em>Updates must reflect changes in positions that affect occupational exposure.</em>
<em>Updates must have the cost of PPE that is needed and necessary to reduce exposure</em>
An exposure control plan can be regarded as the framework for compliance between the employer and the workers.
- This framework give room for the employer to creates a written plan that will help in protecting their workers from bloodborne pathogens.
- This plan gives hope to workers in term of protection when working with their Employer.
- There are some elements that is associated with Exposure Control Plan, and theses are;
- Health hazards as well as risk that is attributed to each product in the worksite.
- Statement of purpose.
- procedures and practices in a written form
- Responsibilities from the Manager, CEO, designated resources and employer.
Therefore, exposure control plan is avenue to protect workers from bloodborne pathogens.
brainly.com/question/1203927?referrer=searchResults
Answer:

Explanation:
As per energy conservation we know that the electrostatic potential energy of the charge system is equal to the initial kinetic energy of the alpha particle
So here we can write it as

now we know that


z = 79
here kinetic energy of the incident alpha particle is given as

now we have

now we have
