Glucose has empirical formula C6H12O6. So its formula mass can be calculated from that: 12.01x6 + 1.008x12 + 16.00x6 = 72.06 + 12.096 + 96.00 = 180.156 which needs to be rounded to two decimals to get 180.16 g/mole<span>.</span>
<span>The answer is D)<em> </em>are compounds that have the same number and types of atoms but are arranged differently.
Source: <em>just took the test :)</em></span>
Answer:
1.73 M
Explanation:
We must first obtain the concentration of the concentrated acid from the formula;
Co= 10pd/M
Where
Co= concentration of concentrated acid = (the unknown)
p= percentage concentration of concentrated acid= 37.3%
d= density of concentrated acid = 1.19 g/ml
M= Molar mass of the anhydrous acid
Molar mass of anhydrous HCl= 1 +35.5= 36.5 gmol-1
Substituting values;
Co= 10 × 37.3 × 1.19/36.5
Co= 443.87/36.6
Co= 12.16 M
We can now use the dilution formula
CoVo= CdVd
Where;
Co= concentration of concentrated acid= 12.16 M
Vo= volume of concentrated acid = 35.5 ml
Cd= concentration of dilute acid =(the unknown)
Vd= volume of dilute acid = 250ml
Substituting values and making Cd the subject of the formula;
Cd= CoVo/Vd
Cd= 12.16 × 35.5/250
Cd= 1.73 M
<span>I think the correct answer is A. A
buffer is a substance that resists small change in the acidity of a solution
when an acid or base is added to the solution. Usually, a buffer involves a
weak acid or a weak alkali and one of its salt.</span>
(2) Mg, Ca, and Ba have the most similar chemical properties, and we know this because of their coexistence in the group alkali earth metals (group 2) on the periodic table.