Answer:
Q = 200800 Joules.
Explanation:
Given the following data;
Mass = 4kg
Initial temperature = 30.0°C
Final temperature = 90.0°C
Specific heat capacity of glass = 837 J/kg°C
To find the quantity of heat absorbed;
Heat capacity is given by the formula;
Where;
Q represents the heat capacity or quantity of heat.
m represents the mass of an object.
c represents the specific heat capacity of water.
dt represents the change in temperature.
dt = T2 - T1
dt = 90 - 30
dt = 60°C
Substituting the values into the equation, we have;
Q = 200800 Joules.
Therefore, the amount of heat absorbed is 200800 Joules.
You would be correct.
Because you have only JUST released the arrow, and how close he is to the target, it would have the same amount of energy when it strikes the target. Yes, the kinetic energy would be destroyed when you hit the target but not right away. And yes, the potential energy would also be destroyed once you release the arrow, but it goes straight back once it stops moving, aka when it hits the target, although it has only just stopped moving.
Hope this helps!
4. 1 and 2 only.
1. the downward force is the force of gravity.
<span>2. The upward force exerted is the Normal reaction from the floor.</span>
I would like to visit Pluto because i want to see what a Dwarf planet would look like, i would like to see what kind of minerals are in the planet its self..
Brainliest answer?
The boat traveled from the dock north to the 200-meter marker in the bay in less than 5 minutes, giving the passengers several more hours to fish.
Explanation:
Velocity is a physical quantity that describes the rate of change of displacement with time.
Velocity = 
The quantity differs from speed in that it has both magnitude and direction.
From the options given above:
Displacement: The boat traveled in the north direction from the dock to a 200m mark.
Time taken: approximately less than 5 minutes was the duration of traveling.
This describes the boat's velocity accurately.
Learn more:
Velocity
brainly.com/question/10962624
#learnwithBrainly