Answer:
Explanation:
I am sitting on a train car traveling horizontally at a constant speed of 50 m/s. I throw a ball straight up into the air. Before , the ball gets separated from my hand , both me the ball will be moving with velocity of 50 m /s in horizontal direction .
As soon as ball is separated from the hand , it acquires addition velocity in upward direction and acceleration in downward direction . This will give relative velocity to the ball with respect to me . So I will see the ball going in upward direction under gravitational acceleration . It appears as if I am sitting at rest and ball is going in upward direction under deceleration . My motion at 50 m/s will have no effect on the motion of ball in upward direction , according to first law of Newton . It is so because ball too will be moving in forward direction with the same speed which will not be visible to me because I too am moving with the same speed.
If I am sitting at rest at home and I threw a ball straight up into the air , I will have the same experience of seeing ball going in similar way as described above.
Sound at 70 dB is 70 dB louder than the human reference level. That's 10⁷ times as much as the reference sound power.
Sound at 73 dB is 73 dB louder than the human reference level. That's 10⁷.³ or 2 x 10⁷ times as much as the reference sound power.
Sound at 80 dB is 80 dB louder than the human reference level. That's 10⁸ or 10 x 10⁷ times as much as the reference sound power.
Now we can adumup:
Intensity of all 3 sources = (10⁷) + (2 x 10⁷) + (10 x 10⁷)
Intensity = (13 x 10⁷) times the sound power reference intensity.
Intensity in dB = 10 log (13 x 10⁷) = 10 (7 + log(13)
Intensity = 70 + 10 log(13)
Intensity = 70 + 10 (1.114)
Intensity = 70 + 11.14
Intensity = <em>81.14 dB</em>
<em>______________________________________</em>
Looking at the questioner's profile, I seriously wonder whether I'll ever get a comment in return from this creature, and how I'll ever find out if my solution is correct. For that matter, I'm also seriously questioning how and whether my solution will ever be used for anything.
Answer:
mu=12Tm^2
Explanation:
the magnetic moment mu of a single loop is given by:

where I is the current, B is the magnetic field and A is the area of the loop. By replacing we obtain:

hope this helps!!
Answer:
D. demand; increased
Explanation:
Demand is how much people want it.
Answer:
The value of acceleration that accomplishes this is 8.61 ft/s² .
Explanation:
Given;
maximum distance to be traveled by the car when the brake is applied, d = 450 ft
initial velocity of the car, u = 60 mph = (1.467 x 60) = 88.02 ft/s
final velocity of the car when it stops, v = 0
Apply the following kinematic equation to solve for the deceleration of the car.
v² = u² + 2as
0 = 88.02² + (2 x 450)a
-900a = 7747.5204
a = -7747.5204 / 900
a = -8.61 ft/s²
|a| = 8.61 ft/s²
Therefore, the value of acceleration that accomplishes this is 8.61 ft/s² .