1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IgorLugansk [536]
3 years ago
12

I WILL MARK BRAINLIEST!!ASAP!!! Wet Lab - Coulomb's Law lab from edge!!

Physics
1 answer:
anyanavicka [17]3 years ago
8 0

Answer:

i don't get what I have to do

You might be interested in
In a game of pool, the cue ball moves at a speed of 2 m/s toward the eight ball. When the cue ball hits the eight ball, the cue
agasfer [191]

Answer:

a)  p₀ = 1.2 kg m / s,  b) p_f = 1.2 kg m / s,  c)   θ = 12.36, d)  v_{2f} = 1.278 m/s

Explanation:

a system formed by the two balls, which are isolated and the forces during the collision are internal, therefore the moment is conserved

a) the initial impulse is

        p₀ = m v₁₀ + 0

        p₀ = 0.6 2

        p₀ = 1.2 kg m / s

b) as the system is isolated, the moment is conserved so

       p_f = 1.2 kg m / s

we define a reference system where the x-axis coincides with the initial movement of the cue ball

we write the final moment for each axis

X axis

        p₀ₓ = 1.2 kg m / s

        p_{fx} = m v1f cos 20 + m v2f cos θ

        p₀ = p_f

       1.2 = 0.6 (-0.8) cos 20+ 0.6 v_{2f} cos θ

        1.2482 = v_{2f} cos θ

Y axis  

       p_{oy} = 0

       p_{fy} = m v_{1f} sin 20 + m v_{2f} cos θ

       0 = 0.6 (-0.8) sin 20 + 0.6 v_{2f} sin θ

       0.2736 = v_{2f} sin θ

we write our system of equations

        0.2736 = v_{2f} sin θ

        1.2482 = v_{2f} cos θ

divide to solve

        0.219 = tan θ

         θ = tan⁻¹ 0.21919

         θ = 12.36

let's look for speed

           0.2736 = v_{2f} sin θ

            v_{2f} = 0.2736 / sin 12.36

           v_{2f} = 1.278 m / s

7 0
3 years ago
Using hooke's law find the elastic constant of a spring that stretches 2 cm when 4newton force is applied to it
erica [24]

<u>Answer:</u>

2N/cm

<u>Step-by-step explanation:</u>

According to the Hooke's Law, the force required to extend or compress a spring is directly proportional distance you can stretch it, which is represented as:

F=kx

where, F is the force which is stretching or compressing the spring,

k is the spring constant; and

x is the distance the spring is stretched.

Substituting the given values to find the elastic constant  k to get:

F=kx

4=k(2)

k=\frac{4}{2}

k=2

Therefore, the elastic constant is 2 Newton/cm.

5 0
3 years ago
An object is located 50 cm from a converging lens having a focal length of 15 cm. Which of the following is true regarding the i
crimeas [40]

Answer:

It is real, inverted, and smaller than the object.

Explanation:

Let's start by using the lens equation to find the location of the image:

\frac{1}{q}=\frac{1}{f}-\frac{1}{p}

where we have:

q = ? is the distance of the image from the lens

f = 15 cm is the focal length (positive for a converging lens)

p = 50 cm is the distance of the object from the lens

Solving the equation for q, we find

\frac{1}{q}=\frac{1}{15 cm}-\frac{1}{50 cm}=0.047 cm^{-1}

q=\frac{1}{0.047 cm^{-1}}=+21.3 cm

The sign of q is positive, so the image is real.

Now let's also write the magnification equation:

h_i = - h_o \frac{q}{p}

where  

h_i, h_o are the size of the image and of the object

By substituting p = 50 cm and q = 21.3 cm, we find

h_i = - h_o \frac{21.3 cm}{50 cm}=-0.43 h_o

So we notice that:

|h_i| < |h_o| : this means that the image is smaller than the object

h_i < 0 : this means that the image is inverted

so, the correct option is:

It is real, inverted, and smaller than the object.

7 0
3 years ago
a 280 nm thin film with index of refraction 1.6 floats on waterwhat is the largest wavelength of reflected light for which const
aksik [14]

Answer:

Inside the film the wavelength will be λ/n

For constructive interference to occur the film must be λf/4 thick where λf is the wavelength of the light in the film - there will be a 180 degree phase shift at the water/film interface since the index of refraction of the film is greater than that of water - and the light has to travel λ/2 inside the film for constructive interference to occur

280 nm / 1.6 * 4 = 700 nm is the greatest wavelength allowed

Note that 700 nm is also the upper wavelength of the visible spectrum

3 0
3 years ago
How many revolutions per minute would a 23 m -diameter Ferris wheel need to make for the passengers to feel "weightless" at the
kirza4 [7]

Answer:

Approximately 6.2\; {\rm rpm}, assuming that the gravitational field strength is g = 9.81\; {\rm m\cdot s^{-2}}.

Explanation:

Let \omega denote the required angular velocity of this Ferris wheel. Let m denote the mass of a particular passenger on this Ferris wheel.

At the topmost point of the Ferris wheel, there would be at most two forces acting on this passenger:

  • Weight of the passenger (downwards), m\, g, and possibly
  • Normal force F_\text{normal} that the Ferris wheel exerts on this passenger (upwards.)

This passenger would feel "weightless" if the normal force on them is 0- that is, F_\text{normal} = 0.

The net force on this passenger is (m\, g - F_\text{normal}). Hence, when F_\text{normal} = 0, the net force on this passenger would be equal to m\, g.

Passengers on this Ferris wheel are in a centripetal motion of angular velocity \omega around a circle of radius r. Thus, the centripetal acceleration of these passengers would be a = \omega^{2}\, r. The net force on a passenger of mass m would be m\, a = m\, \omega^{2}\, r.

Notice that m\, \omega^{2} \, r = (\text{Net Force}) = m\, g. Solve this equation for \omega, the angular speed of this Ferris wheel. Since g = 9.81\; {\rm m\cdot s^{-2}} and r = 23\; {\rm m}:

\begin{aligned} \omega^{2} = \frac{g}{r}\end{aligned}.

\begin{aligned} \omega &= \sqrt{\frac{g}{r}} \\ &= \sqrt{\frac{9.81\; {\rm m \cdot s^{-2}}}{23\; {\rm m}}} \\ &\approx 0.653\; {\rm rad \cdot s^{-1}} \end{aligned}.

The question is asking for the angular velocity of this Ferris wheel in the unit {\rm rpm}, where 1\; {\rm rpm} = (2\, \pi\; {\rm rad}) / (60\; {\rm s}). Apply unit conversion:

\begin{aligned} \omega &\approx 0.653\; {\rm rad \cdot s^{-1}} \\ &= 0.653\; {\rm rad \cdot s^{-1}} \times \frac{1\; {\rm rpm}}{(2\, \pi\; {\rm rad}) / (60\; {\rm s})} \\ &= 0.653\; {\rm rad \cdot s^{-1} \times \frac{60\; {\rm s}}{2\, \pi\; {\rm rad}} \times 1\; {\rm rpm} \\ &\approx 6.2\; {\rm rpm} \end{aligned}.

3 0
2 years ago
Other questions:
  • Can you explain to be the definition of Quantum Theory?
    15·1 answer
  • A meteor is approaching earth, what's its motion?
    9·1 answer
  • Cars are safety tested to see how quickly they come to a stop under many conditions. The distance and time of one of these tests
    15·2 answers
  • What does an unconformity in a sequence of rock layers reveal about geologic history?
    6·2 answers
  • What are the two categories of waves​
    10·1 answer
  • Which liquid is the most viscous?<br><br> syrup<br> water<br> milk<br> apple juice
    14·2 answers
  • Which geologic events occur most often at this mid-oceanic ridge plate
    8·1 answer
  • A forward horizontal force of 50 N is applied to a crate. A second horizontal force of
    15·1 answer
  • 8th grade science help help
    9·1 answer
  • Romeo and Juliet are sitting on a balcony 1.5 meters apart. If Romeo has a mass of 61.6 Kg and Juliet has a mass of 48.8 kg. Wha
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!