Answer:
a) at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
b) daylight (d) = 0.50 μm
Incandescent ( i ) = 1 μm
Explanation:
To Calculate the band emission fractions we will apply the Wien's displacement Law
The ban emission fraction in spectral range λ1 to λ2 at a blackbody temperature T can be expressed as
F ( λ1 - λ2, T ) = F( 0 ----> λ2,T) - F( 0 ----> λ1,T )
<em>Values are gotten from the table named: blackbody radiati</em>on functions
<u>a) Calculate the band emission fractions for the visible region</u>
at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
attached below is a detailed solution to the problem
<u>b)calculate wavelength corresponding to the maximum spectral intensity</u>
For daylight ( d ) = 2898 μm *k / 5800 k = 0.50 μm
For Incandescent ( i ) = 2898 μm *k / 2900 k = 1 μm
I attached a photo that explains and gives the answer to your questions. Had to add a border because the whole picture didn’t fit.
..................................................
Answer:
Option A, World War II
Explanation:
During the period of industrial revolution around 1915-25, the chemical engineering has taken a new shape. During this period (i.e around the world war I), there was rise in demand for liquid fuels, synthetic fertilizer, and other chemical products. This lead to development of chemistry centre in Germany . There was rise in use of synthetics fibres and polymers. World war II saw the growth of catalytic cracking, fluidized beds, synthetic rubber, pharmaceuticals production, oil & oil products, etc. and because of rising chemical demand, chemical engineering took a new shape during this period
Hence, option A is the right answer
Answer:
The drying time is calculated as shown
Explanation:
Data:
Let the moisture content be = 0.6
the free moisture content be = 0.08
total moisture of the clay = 0.64
total drying time for the period = 8 hrs
then if the final dry and wet masses are calculated, it follows that
t = (X0+ Xc)/Rc) + (Xc/Rc)* ln (Xc/X)
= 31.3 min.