Answer:c..................
do you have anymore numbers to add to this problem??
Answer: The concentrations of
at equilibrium is 0.023 M
Explanation:
Moles of
= 
Volume of solution = 1 L
Initial concentration of
= 
The given balanced equilibrium reaction is,

Initial conc. 0.14 M 0 M 0M
At eqm. conc. (0.14-x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[CO]\times [Cl_2]}{[COCl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BCOCl_2%5D%7D)
Now put all the given values in this expression, we get :

By solving the term 'x', we get :
x = 0.023 M
Thus, the concentrations of
at equilibrium is 0.023 M
6 electrons... 's' can hold 2..... 'd' can hold 10 and 'f' can hold 14
"CH3COOH + H2O CH3COO- + H3O+" is the equation among the choices given in the question <span>represents the reaction of acetic (ethanoic) acid with water. The correct option among all the options that are given in the question is the second option or option "B". I hope that the answer has helped you.</span>