Answer 2.04
Explanation
Electronegativity decreases down the group and increases across the period in the periodic table.
In the period two of the periodic table,we have the following values for electronegativities with respect to its elements.
Li...........0.98
Be.........1.57
B..........2.04
C.........2.55
N..........3.04
O...........3.44
F...........3.98
Ne........n.a
The value that should be where M is is 2.04
Use the PV = nRT equation T is in Kelvins = 31 + 273 = 304 K
P(0.5) = (2.91)(0.0821)(304)
P(0.5) = 72.6289
P = 145.25 atm or 1.45x10^2 atm
Answer:
D. A solution.
Explanation:
"Water molecules pull the sodium and chloride ions apart, breaking the ionic bond that held them together. After the salt compounds are pulled apart, the sodium and chloride atoms are surrounded by water molecules, as this diagram shows. Once this happens, the salt is dissolved, resulting in a homogeneous solution."
Answer:
Ammonia > Urea > Ammonium nitrate > Ammonium sulphate
Explanation:
Percentage by mass of nitrogen in NH3:
Molar mass of NH3= 17 g/mol
Hence % by mass = 14/17 × 100 = 82.35%
% by mass of NH4NO3
Molar mass of NH4NO3 = 80.043 g/mol
Hence; 28/80.043 × 100 = 34.98%
% by mass of (NH4)2SO4;
Molar mass of (NH4)2SO4= 132.14 g/mol
Hence; 28/132.14 × 100 = 21.19%
% by mass of CH4N2O
Molar mass of urea = 60.0553 g/mol
Hence 28/60.0553 × 100 = 46.62%
Answer:
The pH of the sweater containing Hydrogen ion concentration
is
<u>8</u>
<u></u>
Explanation:
pH = It is the negative logarithm of activity (concentration) of hydrogen ions.
pH = -log([H+])
Now, In the question the concentration of [H+] ions is :
![[H^{+}]=1\times 10^{-8}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D1%5Ctimes%2010%5E%7B-8%7D)

use the relation:


pH = 8
Note : <em><u> 1 times 10 to the power of 8 must be" 1 times 10 to the power of -8"</u></em>
If the concentration is
![[H^{+}]=1\times 10^{8}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D1%5Ctimes%2010%5E%7B8%7D)
Then pH = -8 , which is not possible . So in that case the pH calculation is by other method