Answer:
4 times around
Explanation:
The total number of teeth involved will be the same for each gear. If the front gear is connected to the pedal and it goes around twice, then 2·24 = 48 teeth will have passed the reference point.
If the rear gear is attached to the wheel, and 48 teeth pass the reference point, then it will have made ...
(48 teeth)/(12 teeth/turn) = 4 turns
Answer:
a) benzene = 910 days
b) toluene = 1612.67 days
Explanation:
Given:
Kd = 1.8 L/kg (benzene)
Kd = 3.3 L/kg (toluene)
psolid = solids density = 2.6 kg/L
K = 2.9x10⁻⁵m/s
pores = n = 0.37
water table = 0.4 m
ground water = 15 m
u = K/n = (2.9x10⁻⁵ * (0.4/15)) / 0.37 = 2.09x10⁻⁶m/s
a) For benzene:
The time will take will be:
b) For toluene:
Answer:
Explanation:
First, we will find actual properties at given inlet and outlet states by the use of steam tables:
AT INLET:
At 4MPa and 350°C, from the superheated table:
h₁ = 3093.3 KJ/kg
s₁ = 6.5843 KJ/kg.K
AT OUTLET:
At P₂ = 125 KPa and steam is saturated in vapor state:
h₂ = = 2684.9 KJ/kg
Now, for the isentropic enthalpy, we have:
P₂ = 125 KPa and s₂ = s₁ = 6.5843 KJ/kg.K
Since s₂ is less than and greater than at 125 KPa. Therefore, the steam is in a saturated mixture state. So:
Now, we will find (enthalpy at the outlet for the isentropic process):
Now, the isentropic efficiency of the turbine can be given as follows:
Answer:
15.24°C
Explanation:
The quality of any heat pump pumping heat from cold to hot place is determined by its coefficient of performance (COP) defined as
Where Q_{in} is heat delivered into the hot place, in this case, the house, and W is the work used to pump heat
You can think of this quantity as similar to heat engine's efficiency
In our case, the COP of our heater is
Where T_{house} = 24°C and T_{out} is temperature outside
To achieve maximum heating, we will have to use the most efficient heat pump, and, according to the second law of thermodynamics, nothing is more efficient that Carnot Heat Pump
Which has COP of:
So we equate the COP of our heater with COP of Carnot heater
Rearrange the equation
Solve this simple quadratic equation, and you should get that the lowest outdoor temperature that could still allow heat to be pumped into your house would be
15.24°C
Answer:
230.51 m
Explanation:
Pb = 695 mmHg
Pt = 675 mmHg
Pb - Pt = 20 mmHg
Calculate dP:
dP = p * g * H = (13600)*(9.81)*(20/1000) = 2668.320 Pa
Calculate Height of building as dP is same for any medium of liquid
dP = p*g*H = 2668.320
H = 2668.32 / (1.18 * 9.81) = 230.51 m