1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yanka [14]
3 years ago
5

What are example for mantle

Engineering
1 answer:
xenn [34]3 years ago
3 0

The definition of a mantle is a shawl or a cloak. An example of a mantle is a fancy shawl worn over a cocktail dress.

You might be interested in
A charge of +2.00 μC is at the origin and a charge of –3.00 μC is on the y axis at y = 40.0 cm . (a) What is the potential at po
Nimfa-mama [501]

a) Potential in A: -2700 V

b) Potential difference: -26,800 V

c) Work: 4.3\cdot 10^{-15} J

Explanation:

a)

The electric potential at a distance r from a single-point charge is given by:

V(r)=\frac{kq}{r}

where

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q is the charge

r is the distance from the charge

In this problem, we have a system of two charges, so the total potential at a certain point will be given by the algebraic sum of the two potentials.

Charge 1 is

q_1=+2.00\mu C=+2.00\cdot 10^{-6}C

and is located at the origin (x=0, y=0)

Charge 2 is

q_2=-3.00 \mu C=-3.00\cdot 10^{-6}C

and is located at (x=0, y = 0.40 m)

Point A is located at (x = 0.40 m, y = 0)

The distance of point A from charge 1 is

r_{1A}=0.40 m

So the potential due to charge 2 is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.40}=+4.50\cdot 10^4 V

The distance of point A from charge 2 is

r_{2A}=\sqrt{0.40^2+0.40^2}=0.566 m

So the potential due to charge 1 is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.566}=-4.77\cdot 10^4 V

Therefore, the net potential at point A is

V_A=V_1+V_2=+4.50\cdot 10^4 - 4.77\cdot 10^4=-2700 V

b)

Here we have to calculate the net potential at point B, located at

(x = 0.40 m, y = 0.30 m)

The distance of charge 1 from point B is

r_{1B}=\sqrt{(0.40)^2+(0.30)^2}=0.50 m

So the potential due to charge 1 at point B is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.50}=+3.60\cdot 10^4 V

The distance of charge 2 from point B is

r_{2B}=\sqrt{(0.40)^2+(0.40-0.30)^2}=0.412 m

So the potential due to charge 2 at point B is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.412}=-6.55\cdot 10^4 V

Therefore, the net potential at point B is

V_B=V_1+V_2=+3.60\cdot 10^4 -6.55\cdot 10^4 = -29,500 V

So the potential difference is

V_B-V_A=-29,500 V-(-2700 V)=-26,800 V

c)

The work required to move a charged particle across a potential difference is equal to its change of electric potential energy, and it is given by

W=q\Delta V

where

q is the charge of the particle

\Delta V is the potential difference

In this problem, we have:

q=-1.6\cdot 10^{-19}C is the charge of the electron

\Delta V=-26,800 V is the potential difference

Therefore, the work required on the electron is

W=(-1.6\cdot 10^{-19})(-26,800)=4.3\cdot 10^{-15} J

4 0
3 years ago
The proposed grading at a project site will consist of 25,100 m3 of cut and 23,300 m3 of fill and will be a balanced earthwork j
Anna [14]

Answer:

the volume of water that will be required to bring these soils to the optimum moisture content is 1859 kL

Explanation:

Given that;

volume of cut = 25,100 m³

Volume of dry soil fill = 23,300 m³

Weight of the soil will be;

⇒ 93% × 18.3 kN/m³ × 23,300 m³

= 0.93 × 426390 kN 3

= 396,542.7 kN  

Optimum moisture content = 12.9 %

Required amount of moisture = (12.9 - 8.3)% = 4.6 %

So,

Weight of water required = 4.6% × 396,542.7 = 18241 kN

Volume of water required = 18241 / 9.81 = 1859 m³

Volume of water required = 1859 kL

Therefore, the volume of water that will be required to bring these soils to the optimum moisture content is 1859 kL

6 0
3 years ago
What is the biggest expectation when engineers test out designs?
forsale [732]
The answer is B because it could be feasible but it’s not a need it and you got a time frame but it’s not a requirement and it doesn’t have to be unique.
6 0
4 years ago
Read 2 more answers
Bending is defined as? A. the application of a load tending to distort a member in one direction. B. the application of opposing
amm1812
Hi how are you today
4 0
3 years ago
How many seconds do you need to stop a car going 60 miles per hour, if the pavement is dry?
Anna71 [15]

Answer:

Roughly 4.6 seconds

Explanation:

7 0
3 years ago
Other questions:
  • Explain what entropy is in relation to the second law of thermodynamics?
    9·1 answer
  • Estimate the quantity of soil to be excavated from the borrow pit​
    12·1 answer
  • Use the drop-down menus to choose the correct term or words to complete the statements.
    10·1 answer
  • What is the Principle of Entropy Increase?
    9·1 answer
  • A triangular roadside channel is poorly lined with riprap. The channel has side slopes of 2:1 (H:V) and longitudinal slope of 2.
    9·1 answer
  • List two skills that are useful when working in teams.
    11·2 answers
  • Is an ideal way for a high school student to see what an engineer does on a typical day but does not provide a hands-on experien
    9·2 answers
  • Describe in your own words the three strengthening mechanisms
    7·1 answer
  • In the planning process of the product development life cycle what is it important to inventory
    7·1 answer
  • A manufacturer has been asked to produce 100 customized metal discs with a particular pattern engraved on them. Which production
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!