Answer:
177.1 L
Explanation:
The excersise can be solved, by the Ideal Gases Law.
P . V = n . R . T
In first step we need to determine the moles of gas:
We convert T° from, C° to K → 20°C + 273 = 293K
We convert P from mmHg to atm → 760 mmHg = 1atm
1Dm³ = 1L → 190L
We replace: 190 L . 1 atm = n . 0.082 . 293K
(190L.atm) / 0.082 . 293K = 7.91 moles.
We replace equation at STP conditions (1 atm and 273K)
V = (n . R .T) / P
V = (7.91 mol . 0.082 . 273K) / 1atm = 177.1 L
We can also make a rule of three:
At STP conditions 1 mol of gas occupies 22.4L
Then, 7.91 moles will be contained at (7.91 . 22.4) /1 = 177.1L
Answer:
a metal spoon left in boiling water
Explanation:
Answer:
By a factor of 12
Explanation:
For the reaction;
A + 2B → products
The rate law is;
rate = k[A]²[B]
As you can see, the rate is proportional to the square of the concentration of A and the of the concentration of B
.
Let's say initially, [A] = x, [B] = y
The rate law in this case is equal to;
rate1 = k. x².y
Now you double the concentration of A and triple the concentration of B.
[A] = 2x, [B] = 3y
The new rate law is given as;
rate2 = k . (2x)². (3y)
rate2 = k . 4x² . 3y
rate2 = 12 k . x² . y
Comparing rate 2 and rate 1, the ratio is given as; rate 2/ rate 1 = 12
Therefore the rate has increased by a factor of 12.
Answer: Plastic water bottles
Explanation:
If you use disposable water bottles, here are some important concerns you should know about how they’re made as well as the problems they cause for the planet, your health, and your wallet.
Group 8 elements. They are unreactive and stable