Can you post a picture of that the checkings are
I would say B because c and d would decrease competition and a would do the same, or just kill the ecosystem.
Hope this helps and don't forget to hit that heart :)
Answer:
3 × 10^8 m/s
Explanation:
The wavelength, can be calculated by using the following formula;
λ = v/f
Where;
λ = wavelength (m)
v = velocity/speed of light (m/s)
f = frequency (Hz)
According to the provided information in this question, λ = 600nm i.e. 600 × 10^-9m, f = 5.00 x 10^14 Hz
Hence, using λ = v/f
v = λ × f
v = 600 × 10^-9 × 5.00 x 10^14
v = 6 × 10^-7 × 5.00 x 10^14
v = 30 × 10^(-7 + 14)
v = 30 × 10^ (7)
v = 3 × 10^8 m/s
Answer:
Explanation:
Use one of your experimentally determined values of k, the activation energy you determined, and the Arrhenius equation to calculate the value of the rate constant at 25 °C. Alternatively, you can simply extrapolate the straight line plot of ln(k) vs. 1/T in your notebook to 1/298 , read off the value of ln(k), and determine the value of k. Please put your answer in scientific notation. slope=-12070, Ea=100kJ/mol, k= 0.000717(45C), 0.00284(55C), 0.00492(65C), 0.0165(75C), 0.0396(85C)
Explanation;
According to Arrhenius equation:
i.e. ln(k2/k1) = -Ea/R (1/T2 - 1/T1)
Where, k1 = 0.000717, T1 = 45 oC = (45+273) K = 318 K
T2 = 25 oC = (25 + 273) K = 298 K
i.e. ln(k2/0.000717) = -12070 (1/298 - 1/318)
i.e. ln(k2/0.000717) = -2.54738
i.e. k2/0.000717 = 
= 0.078286
Therefore, the required constant (k2) = 0.078286 * 0.000717 = 