Gravitational potential energy can be calculated using the formula <span>PE = m × g × h, where g is the gravitational acceleration and is constant hence the energy is dependent directly to mass and the height of the object. Hence more PE is registered when the object is heavier and/or at greater initial height. </span>
Answer:
(A). The flux is 0.336 N.m²/C
(B). The flux is zero.
Explanation:
Given that,
Length = 4.2 cm
Width = 4.0 cm
Electric field 
Area vector is perpendicular to xy plane
(A). We need to calculate the flux
Using formula of flux

Where, E = electric field
A = area
Put the value into the formula



(B). Given electric field

We need to calculate the flux
Using formula of flux

Put the value into the formula

Here, The component of k is not given
So, the flux is

Hence, (A). The flux is -0.336 N.m²/C
(B). The flux is zero.
1) 4min = 4*60 sec = 240 sec
2) Distance = speed times time = 3 * 240 = 720 m
Answer
Inertia is the resistance of any physical object to any change in its velocity. This includes changes to the object's speed, or direction of motion. An aspect of this property is the tendency of objects to keep moving in a straight line at a constant speed, when no forces act upon them.