Answer:
amplifying signals is the correct answer
Explanation:
Answer:
133.62 kmh.
Explanation:
Time provided = 3.25 hours.
Distance to be covered 300 km
Times spent in first 100 km = 1 hour
Time spent in next 43 km
= 43 / 40 = 1.075 hours
Total time spent = 2.075 hours
Total distance covered = 143 km
Distance remaining = 300 - 143
=157 km .
Time remaining = 3.25 - 2.075
= 1.175
Speed required = Distance remaining / time remaining
= 157 / 1.175
= 133.62 kmh.
Answer:
15 is the answer
Explanation:
i multiplied 1.5 by 10 to get 15
Answer:
1 eV
Explanation:
Given:
Work function, ∅ = 2.00 eV
Kinetic energy of the ejected of the electron, K.E = 4.0 eV
Now,
using the photoelectric equation
, we have
Energy of the photon (E) = ∅ + K.E
also,
E = hc/λ
where, h is plank's constant
c is the speed of the light
λ is the wavelength
thus, we have
hc/λ = 2 + 4 = 6 eV
Energy of photon = 6eV
Now,
for the second case
λ' = 2λ
when Wavelength is doubled , E is halved
thus,
E' = hc/λ'
or
E' = hc/2λ
or
E' = E/2 = 6/2 = 3 eV
also,
E' = ∅ + KE
'
thus on substituting the values,
3 = 2 + KE'
or
KE' = 1 eV
Hence, the maximum kinetic energy for the second case is 1 eV