Answer:
Wavelength = 0.48 m (Approx)
Explanation:
Given:
Speed of sound = 340 m/s
Frequency = 706 hz
Find:
Wavelength
Computation:
Wavelength = Speed of sound / Frequency
Wavelength = 340 / 706
Wavelength = 0.48 m (Approx)
Answer:
Coefficient of friction will be 0.587
Explanation:
We have given mass of the car m = 500 kg
Distance s = 18.25 m
Initial velocity of the car u = 14.5 m/sec
As the car finally stops so final velocity v = 0 m/sec
From second equation of motion



We know that acceleration is given by



So coefficient of friction will be 0.587
For the considerably longer periods– decades to millennia – which are relevant for climate change, the slightly larger heat capacity of the deep ocean<span> is </span>important. Ocean currents<span> and mixing by winds and waves can transport and redistribute heat to deeper </span>ocean<span> layers.</span>
I do believe the answer is land because the ocean/sea gets cold when its night. So the answer is land
Answer:
The rate of the boat in still water is 44 mph and the rate of the current is 4 mph
Explanation:
x = the rate of the boat in still water
y = the rate of the current.
Distance travelled = 120 mi
Time taken upstream = 3 hr
Time taken downstream = 2.5 hr
Speed = Distance / Time
Speed upstream

Speed downstream

Adding both the equations


The rate of the boat in still water is <u>44 mph</u> and the rate of the current is <u>4 mph</u>