Answer:
It says in the question its up to you to decide, so you have to graph the weather changes then explain why you graphed it in that way.
Answer:
Answers are in the explanation.
Explanation:
- The half‑life of A increases as the initial concentration of A decreases. order: <em>2. </em>In the half-life of second-order reactions, the half-life is inversely proportional to initial concentration.
- A three‑fold increase in the initial concentration of A leads to a nine‑fold increase in the initial rate. order: <em>2. </em>The rate law of second-order is: rate = k[A]²
- A three‑fold increase in the initial concentration of A leads to a 1.73‑fold increase in the initial rate. order: <em>1/2. </em>The rate law for this reaction is: rate = k √[A]
- The time required for [A] to decrease from [A]₀ to [A]₀/2 is equal to the time required for [A] to decrease from [A]₀/2 to [A]₀/4. order: <em>1. </em>The concentration-time equation for first-order reaction is: ln[A] = ln[A]₀ - kt. That means the [A] decreasing logarithmically.
- The rate of decrease of [A] is a constant. order: <em>0. </em>The rate law is: rate = k -<em>where k is a constant-</em>
Answer:
You should start with 63.54 grams of copper.
Explanation:
The chemical reactions are processes in which the nature of the substances changes, that is, from some initial substances called reactants, totally different ones called products are obtained.
In the chemical reaction, the formulas of reagents and products appear preceded by numbers (the stoichiometric coefficients) that indicate the proportions according to which the transformation occurs. So you can say that stoichiometry establishes relationships between the molecules or elements that make up the reactants of a chemical equation with the products of said reaction. The relationships that are established are MOLAR relationships between the compounds or elements that make up the chemical equation: always in MOLES.
The stoichiometric coefficients of a chemical equation are due to the fact that the atoms present before the reaction must be the same after the reaction, although they will have been rearranged to produce new substances.
If you want 2 moles of silver (Ag), for stoichiometry of the reaction you need a moles of copper Cu. Being the molar mass of copper Cu 63.54 g / mole, then:
1 mole*63.54 g/mole= 63.54 g
<u><em>
You should start with 63.54 grams of copper.</em></u>
<u><em></em></u>
It should be the digestive system as it absorbs the nutrients of the food into your body.
The answer is No. That is the mass of the sealed jar and its contents does not change upon the vaporization of the liquid, as according to the “law of conservation of mass” , the mass remain conserved when no matter is escape, the mass will remain constant and here also as the jar is sealed, no matter is escaped thus no mass change will be there.