Answer:
The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme
Explanation:
From the given information:
The activation barrier for the hydrolysis of sucrose into glucose and fructose is 108 kJ/mol.
In this same concentration for the glucose and fructose; the reaction rate can be calculated by the rate factor which can be illustrated from the Arrhenius equation;
Rate factor in the absence of catalyst:

Rate factor in the presence of catalyst:

Assuming the catalyzed reaction and the uncatalyzed reaction are taking place at the same temperature :
Then;
the ratio of the rate factors can be expressed as:

![\dfrac{k_2}{k_1}={ \dfrac {e^{[ Ea_1 - Ea_2 ] }}{RT} }}](https://tex.z-dn.net/?f=%5Cdfrac%7Bk_2%7D%7Bk_1%7D%3D%7B%20%20%5Cdfrac%20%7Be%5E%7B%5B%20%20Ea_1%20-%20Ea_2%20%5D%20%7D%7D%7BRT%7D%20%7D%7D)
Thus;

Let say the assumed temperature = 25° C
= (25+ 273)K
= 298 K
Then ;



The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme
Answer:
37.3
263.5
Explanation:
The scale measures hundreds of units, tens of units, units, and parts of units (1 decimal place.
Scale 1
Hundreds 0 * 100 = 0
Tens: 3 * 10 = 30
Units: 7 * 1 = 7
1/10 unit = 3* 0.1 = 0.3
Total 30 + 7 + 0.3 = 37.3
Scale 2
Hundreds 2 * 100 = 200
Tens: 6 * 10 = 60
Units: 3 * 1 = 3
1/10 unit = 5* 0.1 = 0.5
Total = 200 + 60 + 3 + 0.5 = 263.5
Answer:
uhhh i do not know this but we are learning at my school i could give you the answer soon i you want
Explanation:
Answer:
The particles in a liquid are close together (touching) but they are able to move/slide/flow past each other.
Explanation:
The correct answer is Potassium Chloride.
<span />