As the temperature increases the kinetic energy of the molecules increases, if u add more heat you get more kinetic energy.
Answer:
q = 3.6 10⁵ C
Explanation:
To solve this exercise, let's use one of the consequences of Gauss's law, that all the charge on a body can be considered at its center, therefore we calculate the electric field on the surface of a sphere with the radius of the Earth
r = 6 , 37 106 m
E = k q / r²
q = E r² / k
q =
q = 4.5 10⁵ C
Now let's calculate the charge on the planet with E = 222 N / c and radius
r = 0.6 r_ Earth
r = 0.6 6.37 10⁶ = 3.822 10⁶ m
E = k q / r²
q = E r² / k
q =
q = 3.6 10⁵ C
Answer: D(t)= 50(4/5)^t
Explanation: If 1/5 of the temperature difference is lost each minute, that means 4/5 of the difference remains each minute. So each minute, the temperature difference is multiplied by a factor of 4/5 (or 0.8).
If we start with the initial temperature difference, 50° Celsius, and keep multiplying by 4/5, this function gives us the temperature difference t minutes after the cake was put in the cooler.