Answer:
The rate of change of the area when the bottom of the ladder (denoted by
) is at 36 ft. from the wall is the following:

Explanation:
The Area of the triangle is given by
where
(by using the Pythagoras' Theorem) and
is the length of the base of the triangle or the distance between the bottom of the ladder and the wall.
The area is then

The rate of change of the area is given by its time derivative


Product rule
Chain rule


In here we can identify
,
and
.
The result is then

For this we use general equation for gases. Our variables represent:
p- pressure
v-volume
t- temperature
P1V1/T1 = P2V2/T2
in this equation we know:
P1,V1 and T1, T2 and V2.
We have one equation and 1 unknown variable.
P2 = T2P1V1/T1V2 = 1.1atm
Answer:
1.1775 x 10^-3 m^3 /s
Explanation:
viscosity, η = 0.250 Ns/m^2
radius, r = 5 mm = 5 x 10^-3 m
length, l = 25 cm = 0.25 m
Pressure, P = 300 kPa = 300000 Pa
According to the Poisuellie's formula
Volume flow per unit time is


V = 1.1775 x 10^-3 m^3 /s
Thus, the volume of oil flowing per second is 1.1775 x 10^-3 m^3 /s.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The theoretical angular magnification lies within the angular magnification range
Explanation:
From the question we are told that
The focal length of B is 
The focal length of A is 
The theoretical angular magnification is mathematically represented as


Form the question the measured angular magnification ranges from 4 -5
So from the value calculated and the value given we can deduce that the theoretical angular magnification lies within the angular magnification range