Answer:
Ni(NO3)2 + 2NaOH → Ni(OH)2 + 2NaNO3
NET IONIC EQUATION :
Ni +2(aq) + 2(NO3) -1(aq) + 2Na +1(aq) + 2OH -1(aq)
→ Ni(OH)2 (s) + 2Na +1(aq) + 2(NO3) -1(aq)
sorry there is no space to write the reaction in one line...
Answer:
12.32 L.
Explanation:
The following data were obtained from the question:
Mass of CH4 = 8.80 g
Volume of CH4 =?
Next, we shall determine the number of mole in 8.80 g of CH4. This can be obtained as follow:
Mass of CH4 = 8.80 g
Molar mass of CH4 = 12 + (1×4) = 12 + 4 = 16 g/mol
Mole of CH4 =?
Mole = mass/Molar mass
Mole of CH4 = 8.80 / 16
Mole of CH4 = 0.55 mole.
Finally, we shall determine the volume of the gas at stp as illustrated below:
1 mole of a gas occupies 22.4 L at stp.
Therefore, 0.55 mole of CH4 will occupy = 0.55 × 22.4 = 12.32 L.
Thus, 8.80 g of CH4 occupies 12.32 L at STP.
Radioactive decay => C = Co { e ^ (- kt) |
Data:
Co = 2.00 mg
C = 0.25 mg
t = 4 hr 39 min
Time conversion: 4 hr 39 min = 4.65 hr
1) Replace the data in the equation to find k
C = Co { e ^ (-kt) } => C / Co = e ^ (-kt) => -kt = ln { C / Co} => kt = ln {Co / C}
=> k = ln {Co / C} / t = ln {2.00mg / 0.25mg} / 4.65 hr = 0.44719
2) Use C / Co = 1/2 to find the hallf-life
C / Co = e ^ (-kt) => -kt = ln (C / Co)
=> -kt = ln (1/2) => kt = ln(2) => t = ln (2) / k
t = ln(2) / 0.44719 = 1.55 hr.
Answer: 1.55 hr