Answer:
a) attached below
b) 0.0337
c) 2730.206 Ib
d) 2320.338 ft/min
Explanation:
<u>a) Plot of the drag polar for this aircraft </u>
first we will calculate :
Wing area (s) = Wing span (b) * Average chord length(c)
= 53.3 * 6 = 319.8 ft^2
Aspect ratio = b^2 / s = 8.883
K = 1 /
eAR = 1 /
Drag polar ( Cd ) = 0.02 + 0.044 C^2L
attached below is a plot of the drag polar
<u />
Attached below is the detailed solution of the remaining part of the question
Bend surface in water! Hopefully this helps, I looked it up!
Explanation:
Advantages:
-An efficient method of water softening for smaller purposes.
-Cheap
-Reusable
Disadvantages:
-Unwanted elements can be found in the distilled water.
-Very high levels of acidity
-Doesn't contain any oxygen, very tasteless.
Answer:
a) periodic (N = 1)
b) not periodic
c) not periodic
d) periodic (N = 8)
e) periodic (N = 16)
Explanation:
For function to be a periodic: f(n) = f(n+N)
![a) x[n]=sin(\frac{8\pi}{2}n+1)\\\\sin(\frac{8\pi}{2}n+1)=sin(4\pi n+1)](https://tex.z-dn.net/?f=a%29%20x%5Bn%5D%3Dsin%28%5Cfrac%7B8%5Cpi%7D%7B2%7Dn%2B1%29%5C%5C%5C%5Csin%28%5Cfrac%7B8%5Cpi%7D%7B2%7Dn%2B1%29%3Dsin%284%5Cpi%20n%2B1%29)
It is periodic with fundamental period N = 1
![b) x[n]=cos(\frac{n}{8} -\pi)\\\\\frac{1}{8} N=2\pi k](https://tex.z-dn.net/?f=b%29%20x%5Bn%5D%3Dcos%28%5Cfrac%7Bn%7D%7B8%7D%20-%5Cpi%29%5C%5C%5C%5C%5Cfrac%7B1%7D%7B8%7D%20N%3D2%5Cpi%20k)
N must be integer. So it is nor periodic
![c) x[n]=cos(\frac{\pi}{8} n^2)\\\\cos(\frac{\pi}{8} (n+N)^2)=cos(\frac{\pi}{8} (n^2+N^2+2nN)\\\\N^2 = 16 \:\:or\:\:2nN=16](https://tex.z-dn.net/?f=c%29%20x%5Bn%5D%3Dcos%28%5Cfrac%7B%5Cpi%7D%7B8%7D%20n%5E2%29%5C%5C%5C%5Ccos%28%5Cfrac%7B%5Cpi%7D%7B8%7D%20%28n%2BN%29%5E2%29%3Dcos%28%5Cfrac%7B%5Cpi%7D%7B8%7D%20%28n%5E2%2BN%5E2%2B2nN%29%5C%5C%5C%5CN%5E2%20%3D%2016%20%5C%3A%5C%3Aor%5C%3A%5C%3A2nN%3D16)
Since N is dependent to n. So it is not periodic.
![d) x[n]=cos(\frac{\pi }{2} n) cos(\frac{\pi }{4} n)\\\\x[n] = \frac{1}{2} cos(\frac{3\pi }{4} n) + \frac{1}{2} cos(\frac{\pi }{4} n)\\\\N_1=8\:\:and\:\:N_2=8\\](https://tex.z-dn.net/?f=d%29%20x%5Bn%5D%3Dcos%28%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20n%29%20cos%28%5Cfrac%7B%5Cpi%20%7D%7B4%7D%20%20n%29%5C%5C%5C%5Cx%5Bn%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20cos%28%5Cfrac%7B3%5Cpi%20%7D%7B4%7D%20n%29%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20cos%28%5Cfrac%7B%5Cpi%20%7D%7B4%7D%20n%29%5C%5C%5C%5CN_1%3D8%5C%3A%5C%3Aand%5C%3A%5C%3AN_2%3D8%5C%5C)
So it is periodic with fundamental period N = 8.
![e) x[n]=2cos(\frac{\pi }{4} n)+sin(\frac{\pi }{8} n)-2cos(\frac{\pi }{2} n+\frac{\pi }{6} )\\\\N_1=8\:\:and\:\:N_2=16\:\:and\:\:N_3=4](https://tex.z-dn.net/?f=e%29%20x%5Bn%5D%3D2cos%28%5Cfrac%7B%5Cpi%20%7D%7B4%7D%20%20n%29%2Bsin%28%5Cfrac%7B%5Cpi%20%7D%7B8%7D%20n%29-2cos%28%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20n%2B%5Cfrac%7B%5Cpi%20%7D%7B6%7D%20%29%5C%5C%5C%5CN_1%3D8%5C%3A%5C%3Aand%5C%3A%5C%3AN_2%3D16%5C%3A%5C%3Aand%5C%3A%5C%3AN_3%3D4)
So it is periodic with N = 16.