<u>Answer:</u> The chemical formula is 
<u>Explanation:</u>
Ionization energy is defined as the amount of energy that is required to remove an electron from a chemical species.
The ionization energy equation for the given values follow:



From the values of ionization energy above, it can be seen that the ionization energy increases as every succeeding electron is removed.
Second ionization energy is a little higher than the first one but there is a huge amount of difference between the third and second ionization energy.
This implies that the ion formed during second ionization energy has a stable configuration and it requires a humongous amount of heat to release the third electron.
Hence, the ion formed will be 
Sulfite ion is a polyatomic ion having a chemical formula of 
An ionic compound is formed between the two ions and the chemical compound formed between the two will have a formula of 
Hence, the chemical formula is 
Answer:
0 degree C
Explanation:
0 degree C = 32 degree F
0 degree F = -17.7778 degree C
So the solution inside doesn't splash
Answer & Explanation:
In physics, a contact force is a force that acts at the point of contact between two objects, in contrast to body forces. Contact forces are described by Newton's laws of motion, as with all other forces in dynamics. Contact force is the force in which an object comes in contact with another object. Contact forces are also direct forces. Contact forces are ubiquitous and are responsible for most visible interactions between macroscopic collections of matter. Pushing a car up a hill or kicking a ball or pushing a desk across a room are some of the everyday examples where contact forces are at work. In the first case the force is continuously applied by the person on the car, while in the second case the force is delivered in a short impulse.
Answer: 


Explanation:
Entropy is the measure of randomness or disorder of a system.
A system has positive value of entropy if the disorder increases and a system has negative value of entropy if the disorder decreases.
1. 
As 4 moles of gaseous reactants are changing to 2 moles of gaseous products, the randomness is decreasing and the entropy is negative
2. 
As 9 moles of gaseous reactants are changing to 10 moles of gaseous products, the randomness is increasing and the entropy is positive.
3. 
As 1 mole of solid reactants is changing to 2 moles of gaseous products, the randomness is increasing and the entropy is positive.
4. 
As 4 moles of gaseous reactants is changing to 5 moles of gaseous products, the randomness is increasing and the entropy is positive
5. 
As 4 moles of gaseous reactants is changing to 1 moles of gaseous products, the randomness is decreasing and the entropy is negative.