The gravitational force between two objects is given by:

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is the separation between the two objects
The distance of the telescope from the Earth's center is

, the gravitational force is

and the mass of the Earth is

, therefore we can rearrange the previous equation to find m2, the mass of the telescope:
Answer:
liquid are close together with no regular arrangement. solid are tightly packed, usually in a regular pattern.
Answer:
Acceleration
Explanation:
Its speed or velocity change
<span>Density is 3.4x10^18 kg/m^3
Dime weighs 1.5x10^12 pounds
The definition of density is simply mass per volume. So let's divide the mass of the neutron star by its volume. First, we need to determine the volume. Assuming the neutron star is a sphere, the volume will be 4/3 pi r^3, so
4/3 pi 1.9x10^3
= 4/3 pi 6.859x10^3 m^3
= 2.873x10^10 m^3
Now divide the mass by the volume
9.9x10^28 kg / 2.873x10^10 m^3 = 3.44588x10^18 kg/m^3
Since we only have 2 significant digits in our data, round to 2 significant digits, giving 3.4x10^18 kg/m^3
Now to figure out how much the dime weighs, just multiply by the volume of the dime.
3.4x10^18 kg/m^3 * 2.0x10^-7 m^3 = 6.8x10^11 kg
And to convert from kg to lbs, multiply by 2.20462, so
6.8x10^11 kg * 2.20462 lb/kg = 1.5x10^12 lb</span>