The muscular system brings strength and endurance to the body. It helps us perform everyday activities. As well as soaks up water to keep us hydrated longer.
Answer:
Δ h = 52.78 m
Explanation:
given,
Atmospheric pressure at the top of building = 97.6 kPa
Atmospheric pressure at the bottom of building = 98.2 kPa
Density of air = 1.16 kg/m³
acceleration due to gravity, g = 9.8 m/s²
height of the building = ?
We know,
Δ P = ρ g Δ h
(98.2-97.6) x 10³ = 1.16 x 9.8 x Δ h
11.368 Δ h = 600
Δ h = 52.78 m
Hence, the height of the building is equal to 52.78 m.
Answer:
(c) position
Explanation:
From the work-energy theorem, the workdone by a force on a body causes a change in kinetic energy of the body.
But, remember that the work done (W) by a force (F) on a body is the product of the force and the distance d, moved by the body caused by the force. i.e
W = F x d
This distance is a measure of the position of the body at a given instance.
Therefore, the work done is given by the force as a function of distance (or position).
<u>Answer:</u> The Young's modulus for the wire is 
<u>Explanation:</u>
Young's Modulus is defined as the ratio of stress acting on a substance to the amount of strain produced.
The equation representing Young's Modulus is:

where,
Y = Young's Modulus
F = force exerted by the weight = 
m = mass of the ball = 10 kg
g = acceleration due to gravity = 
l = length of wire = 2.6 m
A = area of cross section = 
r = radius of the wire =
(Conversion factor: 1 m = 1000 mm)
= change in length = 1.99 mm = 
Putting values in above equation, we get:

Hence, the Young's modulus for the wire is 
Answer:
the answer is that the dough has the same mass before and after it was flattened