Answer:
Fnet = 12 N
Explanation:
Force on a point charge due to another point charge = kq1q2 / d^2
Force on +32uC = due to + 20uC + due to -60uC
where uC = 1 x 10^-6 C and k = 9 x 10^9 N m^2 / C^2
Net Force =
![= \frac{1}{4\pi \epsilon _0} [\frac{32 \times 10^-^6 \times60\times10^-^6}{(60/100)^2}-\frac{32 \times 10^-^6 \times20\times10^-^6}{ (40/100)^2} ]](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%20%5Cepsilon%20_0%7D%20%5B%5Cfrac%7B32%20%5Ctimes%2010%5E-%5E6%20%5Ctimes60%5Ctimes10%5E-%5E6%7D%7B%2860%2F100%29%5E2%7D-%5Cfrac%7B32%20%5Ctimes%2010%5E-%5E6%20%5Ctimes20%5Ctimes10%5E-%5E6%7D%7B%20%2840%2F100%29%5E2%7D%20%20%5D)
![F_{net}=9 \times10^9\times 10^-^1^2[\frac{32\times60\times10^4}{60\times60} -\frac{32\times20\times10^4}{40\times40} ]](https://tex.z-dn.net/?f=F_%7Bnet%7D%3D9%20%5Ctimes10%5E9%5Ctimes%2010%5E-%5E1%5E2%5B%5Cfrac%7B32%5Ctimes60%5Ctimes10%5E4%7D%7B60%5Ctimes60%7D%20-%5Cfrac%7B32%5Ctimes20%5Ctimes10%5E4%7D%7B40%5Ctimes40%7D%20%5D)
![=90[32(\frac{80-60}{60\times 80} )]\\\\=90\times32\times0.004167\\\\=12N](https://tex.z-dn.net/?f=%3D90%5B32%28%5Cfrac%7B80-60%7D%7B60%5Ctimes%2080%7D%20%29%5D%5C%5C%5C%5C%3D90%5Ctimes32%5Ctimes0.004167%5C%5C%5C%5C%3D12N)
Fnet = 12 N
Answer:
150J
Explanation:
work output/work input=100%
so just make work output the subject
(a) The capacitance of the capacitor is:

and the voltage applied across its plates is

The relationship between the charge Q on each plate of the capacitor, the capacitance and the voltage is:

and re-arranging it we find the charge stored in the capacitor:

(b) The electrical potential energy stored in a capacitor is given by

where C is the capacitance and V is the voltage. The new voltage is

so the energy stored in the capacitor is
Answer:
Explanation:
a )
Moment of inertial of four masses about axis that coincides with one side :
Out of four masses . location of two masses will lie on the axis so their moment of inertia will be zero .
Moment of inertia of the two remaining masses
= m L² + m L²
= 2 mL²
b )
Axis that bisects two opposite sides
Each of the four masses will lie at a distance of L / 2 from this axis so moment of inertia of the four masses
= 4 x m x ( L/2 )²
= 4 x mL² / 4
= m L² .
Answer:
U = – 0.12J
Explanation:
Given N = 10 turns, I = 5A, r = 5×10-²m
B^ = 0.05 T iˆ+ 0.3 T kˆ
Magnitude of the magnetic field vector B = √(0.05²+0.3²) = 0.304T
Area = πr² = π(5×10-²)² = 7.85×10-³m²
Magnetic moment μ = NIA
μ = 10×5×7.85×10-³ = 0.3925Am²
U = -μ•B = –0.3925×0.304 = –0.12J
The sign is negative because the magnetic moment is aligned with the magnetic field.