The answer you are looking for would be C. "She asks her lab partner which base he thinks is hardest to study"
This is the correct option out of the other choices.
A. She uses a acid-base indicator to measure the pH of four different solutions
B. She mixes two solutions and measures their pH before and after
C. She asks her lab partner which base he thinks is the hardest to study
D. She measures the temperature of a solution before and after adding H2SO4
Answer:
R = ½ R₀
Explanation:
This is an exercise in Ohm's law,
V = IR
in the initial case
V₀ = I₀ R₀ (1)
indicates that the voltage remains constant and the current is doubled
I = 2 I₀
V₀ = I R
we substitute
V₀ = 2 I₀ R
R = ½ V₀ / I₀
we replace by equation 1
R = ½ R₀
Answer:

Explanation:
Let suppose that centrifuge is rotating at constant angular speed, which means that resultant acceleration is equal to radial acceleration at given radius, whose formula is:

Where:
- Angular speed, measured in radians per second.
- Radius of rotation, measured in meters.
The angular speed is first determined:

Where
is the angular speed, measured in revolutions per minute.
If
, the angular speed measured in radians per second is:


Now, if
and
, the resultant acceleration is then:


If gravitational acceleration is equal to 9.807 meters per square second, then the radial acceleration is equivalent to 1006.382 times the gravitational acceleration. That is:

500J
Explanation:
Given parameters:
Weight of the body = 50N
Height = 10m
Unknown:
Work done = ?
Solution;
Work done is the force that moves a body through a particular distance in the direction of the force.
In this problem, we can solve the problem by relating work done to the potential energy used in lifting the mass.
The weight on a body, a force in the presence of gravity
weight(weight) = mg
where m = mass of body
g = acceleration due to gravity
Work done = Fxd
Where F = force on the body
d = distance moved
Potential energy = mgh
where h is the height
P.E = work done = Weight x height = 50 x 10 = 500J
Learn more:
Work done brainly.com/question/9100769
#learnwithBrainly
Explanation:
Given that,
Mass of the rocket, m = 2150 kg
At time t=0 a rocket in outer space fires an engine that exerts an increasing force on it in the +x−direction. The force is given by equation :

Here F = 888.93 N when t = 1.25 s
(c) We can find the value of A first as :

The value of A is
.
(a) Let J is the impulse does the engine exert on the rocket during the 4.0 s interval starting 2.00 s after the engine is fired. It is given in terms of force as :

Limits will be from 2 s to 2+ 4 = 6 s
It implies :

(b) Impulse is also equal to the change in momentum as :

Hence, this is the required solution.