Answer:

Explanation:
Since the cable touches the road at the mid point of two towers
so here we have vertex at that mid point taken to be origin
now the maximum height on the either side is given as

horizontal distance of the tower from mid point is given as

now from the equation of parabola we have



now we have

now we need to find the height at distance of 200 ft from center
so we have


Answer:
E = 3.54 x 10⁻¹⁹ J
Explanation:
The energy of the photon can be given in terms of its wavelength by the use of the following formula:

where,
E = energy = ?
h = Plank's Constant = 6.626 x 10⁻³⁴ Js
c = speed of light = 2.998 x 10⁸ m/s
λ = wavelength of light = 560.6 nm = 5.606 x 10⁻⁷ m
Therefore,

<u>E = 3.54 x 10⁻¹⁹ J</u>
The correct answer is A. Installation of rigid metal conduit requires grounding and the grounding equipment used may weaken the structure.
Answer:
Explanation:
Given that,
Assume number of turn is
N= 1
Radius of coil is.
r = 5cm = 0.05m
Then, Area of the surface is given as
A = πr² = π × 0.05²
A = 7.85 × 10^-3 m²
Resistance of
R = 0.20 Ω
The magnetic field is a function of time
B = 0.50exp(-20t) T
Magnitude of induce current at
t = 2s
We need to find the induced emf
This induced voltage, ε can be quantified by:
ε = −NdΦ/dt
Φ = BAcosθ, but θ = 90°, they are perpendicular
So, Φ = BA
ε = −NdΦ/dt = −N d(BA) / dt
A is a constant
ε = −NA dB/dt
Then, B = 0.50exp(-20t)
So, dB/dt = 0.5 × -20 exp(-20t)
dB/dt = -10exp(-20t)
So,
ε = −NA dB/dt
ε = −NA × -10exp(-20t)
ε = 10 × NA exp(-20t)
Now from ohms law, ε = iR
So, I = ε / R
I = 10 × NA exp(-20t) / R
Substituting the values given
I = 10×1× 7.85 ×10^-3×exp(-20×2)/0.2
I = 1.67 × 10^-18 A