Answer:
the chemical formula of magnesium hydroxide is Mg(OH)2
Answer:
The metal has a heat capacity of 0.385 J/g°C
This metal is copper.
Explanation:
<u>Step 1</u>: Data given
Mass of the metal = 21 grams
Volume of water = 100 mL
⇒ mass of water = density * volume = 1g/mL * 100 mL = 100 grams
Initial temperature of metal = 122.5 °C
Initial temperature of water = 17°C
Final temperature of water and the metal = 19 °C
Heat capacity of water = 4.184 J/g°C
<u />
<u>Step 2: </u>Calculate the specific heat capacity
Heat lost by the metal = heat won by water
Qmetal = -Qwater
Q = m*c*ΔT
m(metal) * c(metal) * ΔT(metal) = - m(water) * c(water) * ΔT(water)
21 grams * c(metal) *(19-122.5) = -100 * 4.184 * (19-17)
-2173.5 *c(metal) = -836.8
c(metal) = 0.385 J/g°C
The metal has a heat capacity of 0.385 J/g°C
This metal is copper.
The balanced equation for the reaction is as follows
Na₂CO₃ + 2HCl --> 2NaCl + CO₂ + H₂O
stoichiometry of Na₂CO₃ to HCl is 1:2
number of Na₂CO₃ moles reacted = molarity x volume
number of Na₂CO₃ moles = 0.100 mol/L x 0.750 L = 0.0750 mol
according to molar ratio of 1:2
1 mol of Na₂CO₃ reacts with 2 mol of HCl
then 0.0750 mol of Na₂CO₃ mol reacts with - 2 x 0.0750 = 0.150 mol
molarity of given HCl solution is 1.00 mol/L
molarity is defined as the number of moles of solute in 1 L of solution
there are 1.00 mol in 1 L of solution
therefore there are 0.150 mol in - 0.150 mol / 1.00 mol/L = 0.150 L
volume of HCl required is 0.150 L
4.1 h = 14760 s
<span>t 1/2 = ln 2 / k </span>
<span>k = rate reaction = 4.97 x 10^-5 </span>
<span>ln 0.045 / 0.36 = - 4.97 x 10^-5 t </span>
<span>2.08 = 4.97 x 10^-5 t </span>
<span>t = 41839.9 s = 11 h 37 min 19 s</span>
LiNO3; nitrate has a charge of -1, and lithium has a charge of +1