<h3>
Answer:</h3>
The total concentration of ions in a 0.75 M solution of HCl is 1.5 M
That is; 0.75 M H⁺ and 0.75 M Cl⁻
<h3>
Explanation:</h3>
- Concentration or molarity is the number of moles of a compound or an ion contained in one liter of solution. It is measured in moles per liter (M).
- The concentration of ions making a compound is determined by the ratio of moles of the compound and the constituents ions.
- For instance, HCl dissociates to give H⁺ and Cl⁻
HCl(aq) → H⁺(aq) + Cl⁻(aq)
- Therefore, since the mole ratio between HCl and the constituent ions H⁺ and Cl⁻ is 1:1, then 0.75 M of HCl dissociates to give 0.75 M H⁺ and 0.75 m Cl⁻
- Hence the total concentration of ions in a 0.75 M solution of HCl is 1.5 M (0.75 M H⁺ and 0.75 M Cl⁻)
Answer:
x = 4.17
y = 1.86
Explanation:
0.62 = log(x)
x = 10^0.62 = 4.17 ( to the nearest hundredth)
0.62 = ln(y)
y = e^0.62 = 1.86 (to the nearest hundredth)
Answer:
What datatable? Picture please!
Explanation:
Question:
<span>A sample of nitrogen gas had a volume of 500mL, a pressure in its closed container of 740 torr and a temperature of 25°c. what was the volume of gas when the temperature was changed to 50°c and the new pressure was 760 torr?
Answer:
Data Given:
V</span>₁ = 500 mL
P₁ = 740 torr
T₁ = 25 °C + 273 = 298 K
V₂ = ?
P₂ = 760 torr
T₂ = 50 °C + 273 = 323 K
Solution:
Let suppose the gas is acting Ideally, then According to Ideal Gas Equation,
P₁ V₁ / T₁ = P₂ V₂ / T₂
Solving for V₂,
V₂ = (P₁ V₁ T₂) ÷ (T₁ P₂)
Putting Values,
V₂ = (740 torr × 500 mL × 323 K) ÷ (298 K × 760 torr)
V₂ = 527.68 mL