Here, we should use combined gas law which can be derived from combined gas law, “PV=nRT”. Rearranging, we can get PV/T=nR. Then we can set the two states in the problem together to get
P1V1/T1 = P2V2/T2
Then just plug in and solve algebraically.
Hope this helps
Answer:
Draw structures corresponding to the following IUPAC names:(a) (Z)-2-Ethyl-2-buten-1-ol (b) 3-Cyclohexen-1-ol(c) trans-3-Chlorocycloheptanol (d) 1,4-Pentanediol(e) 2,6-Dimethylphenol (f ) o-(2-Hydroxyethyl)phenol
Explanation:
According to IUPAC rules, the name of a compound is:
Prefix+root word+suffix
1) Select the longest carbon chain and it gives the root word.
2) The substituents give the prefix.
3) The functional group gives the secondary suffix and the type of carbon chain gives the primary suffix.
The structure of the given compounds are shown below:
Answer: 4.46 x 10^-4M
Explanation:
The pH of a solution is the concentration of hydrogen ion concentration in the solution. Mathematically, it is expressed as pH = -log(H+), where H+ is the concentration of hydrogen ion
On the pH scale, readings are from 1 to 14.
- pH values less than 7 are regarded as acidic. So, the solution with pH 3.35 is said to be acidic, and will produce hydrogen ions.
3.35 = -log(H+)
(H+) = Antilog (-3.35)
(H+) = 0.000446M
Place (H+) in standard form
(H+) = 4.46 x 10^-4M
Thus, the concentration of hydrogen ion in the solution with pH 3.35 is 4.46 x 10^-4M
Answer:
liquid bolling
Explanation:
because it just using heat.
I believe the correct answer from the choices listed above is option B. A double-replacement reaction happens when atoms in one compound switch places with atoms in another compound. <span> It is a type of chemical </span>reaction<span> where two compounds </span>react<span>, and the positive ions (cation) and the negative ions (anion) of the two reactants switch places. Hope this answers the question.</span>