Answer:
Δ KE = 249158.6 kJ
Explanation:
given data
Truck mass M = 1560 Kg
Truck initial speed, u = 28 m/s
mass of car m = 1070 Kg
initial speed of car u1 = 0 m/s
solution
first we get here final speed by using conservation of momentum that is express as
Mu = (M+m) V .......................1
put here value we get
1560 × 28 = (1560 + 1070 ) V
solve it we get
final speed V = 16.60 m/s
and
Change in kinetic energy will be here
Δ KE =
.................2
put here value and we get
Δ KE =
solve it we get
Δ KE = 249158.6 kJ
Answer:
The length of her shadow is changing at the rate -2 m/s
Explanation:
Let the height oh the street light, h = 22 ft
Let the height of the woman, w = 5.5 ft
Horizontal distance to the street light = l
length of shadow = x
h/w = (l + x)/x
22/5.5 = (l + x)/x
4x = l + x
3x = l
x = 1/3 l
taking the derivative with respect to t of both sides
dx/dt = 1/3 dl/dt
dl/dt = -6 ft/sec ( since the woman is walking towards the street light, the value of l is decreasing with time)
dx/dt = 1/3 * (-6)
dx/dt = -2 m/s
Answer: v = 2[m/s]Explanation:This avarage velocity can be found with the ... B. 2 meters/ second. C. 3 meters/second. D. 4 meters/second. 1.
Answer:
A
Explanation:
hope you fell better my answers thanks god bless keep safe and good luck
<h2>
Answer: an underground lake</h2>
Explanation:
In general, sound (mechanical waves) travels faster in solids than in liquids, and faster in liquids than in gases. This is because <u>the speed of the mechanical waves is determined by a relationship between the elastic properties of the medium </u>in which they are propagated and the mass per unit volume of the medium (that is:<u>density</u>).
In other words: The speed of sound varies depending on the medium through which the sound waves travel.
So, if we are told the sound wave initially had a speed of 4,000 m/s and it suddenly decreases to 1,500 m/s, this means the sound waves passed from a solid medium to a liquid medium.
Hence, the correct option is: an underground lake.