For us to accurately determine what compound
this is, additional info must be given. However I can suggest two compounds
which have molecular mass of about 30.07 g/mol.
1. It could be NO or nitric oxide.
The molecular mass is 16 + 14= 30 g/mol
But if we search the exact weight, it is 30.01 g/mol
2. It could also be (CH3)2 or ethane.
The molecular mass is 2*12+ 6*1= 30 g/mol
But if we search the exact weight, it
is 30.07 g/mol.
<span>So we could say it more likely to to be (CH3)2 </span>
Answer:
The valence shell has higher energy than other occupied shells
Explanation:
According to Bohr's model of the atom, he suggested that the extranuclear part consists of electrons in specific spherical orbits around the nucleus.
His model suggests that the electron can move round the nucleus in certain permissible orbits or energy levels. The ground state is the lowest energy state available to the electron. The excited state is any level higher than the ground state.
The valence electrons are in the outermost shell of an atom. These electrons are of the highest energy levels in the atom
THANKS
Answer:
Yes
Explanation:
Atoms are generally classified as pure substances. A pure substance has the following properties:
- All parts are the same throughout i.e. homogeneous
- They have definite composition
- The cannot easily be broken down into simpler substances by physical means.
- Separation by physical methods is not easy.
- They have unique sets of physical properties.
Elements and compounds are generally classified as pure substances. Since atoms are the building blocks of pure substances, they can be classified as one.
Answer:
<h2>
The bombing of Hiroshima ended World War II.</h2>
Explanation:
[The scientific method includes these steps:
Observation
Hypothesis
Experimentation
Data Analysis
Conclusion]
The first two Hypothesis can be tested with the scientific method, you cannot go back in time and observe or experiment with the bombing of Hiroshima to deduce whether or not it ended World War II.
Answer:
3.2043 x 10²³
Explanation:
No. of Mole of lead (Pb) = 0.532 mol
No. of atoms of lead = ?
Solution:
Formula Used to calculate
no. of moles = numbers of particles (ions, molecules, atoms) /Avogadro's number
Avogadro's no. = 6.023 x10²³
So,
The formula could be written as
no. of atoms of lead Pb = no. of moles x 6.023 x10²³
Put the values in above formula
no. of atoms of lead Pb = 0.532 mol x 6.023 x10²³
no. of atoms of lead Pb = 3.2043 x 10²³
so 3.2043 x 10²³ atoms of lead are contained in 0.532 mole.