Answer:
energy required=qnet=87.75kJ
Explanation:
we will do it in three seperate step and then add up those value.
first step is to heat the sample of water upto 100C i.e upto boiling pont. because just after this sample of water started vaporization.
q 1= m c (T2-T1)
q1 = 36.0 g (4.18 J/gC) (100 - 65 C)
q1 = 5267 J
=5.267kJ
next is to vaporize the sample at 100C
q2 = 36.0 g / 18.0 g/mol X 40.7 kJ/mol
q2= 81.4 kJ
Finally, heat the steam upto 115C
q3 = m c (T2-T1)
q 3= 36.0 g (2.01 J/gC)(115-100C)
q3 = 1085 J
=1.085kJ
qnet=q1 +q2 +q3
energy required=qnet=87.75kJ
There are 34 g of oxygen in the container.
We can use the<em> Ideal Gas Law</em> to solve this problem.
But
, so
and

STP is 0 °C and 1 bar, so

Answer:
Because only a few bacterias can "fix" the atmosphere nitrogen.
Explanation:
The nitrogen at the atmosphere is in the form of N₂ and represents 78% of the atmosphere composition. The element is part of the constitution of nucleic acids and proteins, so the living beings needed them.
However, the animals and the plants can't catch the N₂. Some bacterias that live in mutualism with plants have this ability, and they "fix" the atmosphere nitrogen, transforming the N₂ in the ions nitrite (NO₃⁻) or ammonia (NH₃), which can be caught by the plants.
Them, when the primary consumers eat the plants they catch the nitrogen, which will be passed through the food chain.
So, it's difficult to pull nitrogen from the atmosphere into the nitrogen cycle of the biosphere because only a few bacterias can do it.