The sum of the sum notation ∞Σn=1 2(1/5)^n-1 is S= 5/2
<h3>How to determine the sum of the notation?</h3>
The sum notation is given as:
∞Σn=1 2(1/5)^n-1
The above notation is a geometric sequence with the following parameters
- Initial value, a = 2
- Common ratio, r = 1/5
The sum is then calculated as
S = a/(1 - r)
The equation becomes
S = 2/(1 - 1/5)
Evaluate the difference
S = 2/(4/5)
Express the equation as products
S = 2 * 5/4
Solve the expression
S= 5/2
Hence, the sum of the sum notation ∞Σn=1 2(1/5)^n-1 is S= 5/2
Read more about sum notation at
brainly.com/question/542712
#SPJ1
we have point (-6, - 1)
Now we will put these points in each equation,
y = 4x +23
put x = -6 and y = -1
-1 = 4 (-6) +23
-1 = -24 + 23
-1 = -1
LHS = RHS, so this equation has (-6 , -1) as solution.
y = 6x
put x = -6 and y = -1
-1 = 6 (-6)
-1 not= -36
LHS is not equal RHS, so (-6 , -1) is not a solution for that equation,
y = 3x - 5
put x = -6 and y = -1
-1 = 3 (-6) - 5
-1 = -18 - 5
-1 not= -23
LHS is not equal RHS, so (-6 , -1) is not a solution for that equation,
y= 1/6 x
put x = -6 and y = -1
-1 = -6/6
-1 = -1
LHS = RHS, so (-6 , -1) is a solution for that equation,
Answer:
y=(1/3)x+5
Step-by-step explanation:
Slope-intercept: y=mx+b
m=((y2-y1)/(x2-x1)) = (6-4)/(3+3)= 2/6= (1/3)
y=(1/3)x+b
plug in one of the points (3,6)
6=(1/3)(3)+b
6=1+b 5=b
Answer:
Perimeter = 6x² + 8x
Step-by-step explanation:
Perimeter = 2(length + width)
perimeter = 2((x²+x)+(2x²+3x))
perimeter = 2(x²+2x² + x+3x)
perimeter = 2(3x² + 4x)
perimeter = 2*3x² + 2*4x
perimeter = 6x² + 8x