Answer:
Let's say we were Subtracting 3-2=? To Find the Answer we would Subtract 2 from 3 which is 1 Simple our answer is 1 But let's say the Question is 3 - 1= ? to find this answer we would subtract 1 from 3 which is 2 Let's say you were subtracting 3-3=? to do this we take 3 away from 3 now 3 is 0 so our answer is 0 so there are 3 different problems we can make with 3 we could make more but I'm just telling the basics Hope I Helped Bye :)
Explanation:
Using the given formula, the density of the material is 2.015 g/mL
<h3>Calculating Density </h3>
From the question, we are to determine the density of the material
From the given formula
Density = Mass / Volume
And from the given information,
Mass = 65.5 g
and volume = 32.5 mL
Putting the parameters into the equation,
Density = 65.5/32.5
Density = 2.015 g/mL
Hence, the density of the material is 2.015 g/mL.
Learn more on Calculating density here: brainly.com/question/24772401
#SPJ1
The type of bonds present in the compound. and the type of structure it has and the elements that are presents and the number of moles of each element in one mole of the compound.
Empirical formula is the simplest way the molecular formula can be wrote so here 7 goes into all of these so it would be CH2O
Answer:
No
Explanation:
No, but the total mass of reactants must equal the total mass of products to be a balanced equation.
Example: Consider the following reaction ...
3H₂ + N₂ => 2NH₃ and 'amu' is atomic mass units (formula weights from periodic table)
In terms of molecules, there are 4 molecules on the left (3 molecular hydrogens (H₂) and 1 molecular nitrogen (N₂) and 2 molecules of ammonia on the right side of equation arrow. ∑reactant molecules ≠ ∑product molecules.
In terms of mass of reactants & mass of products, the 3H₂ + N₂ => 6amu + 28amu = 34amu & mass of products (2NH₃) => 2(14amu) + 6(1amu) = 34amu for sum of product masses.
∑mass reactants = ∑mass products <=> 34amu = 34amu.
The expression '∑mass reactants = ∑mass products' as applied to chemical equations is generally known as 'The Law of Mass Balance'.