1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irina1246 [14]
3 years ago
8

What is the primary reason that heating, ventilating, and air conditioning (HVAC) is critical to a data center

Engineering
1 answer:
nydimaria [60]3 years ago
4 0

Answer:

It prevents hardware from overheating.

Explanation:

HVAC stands for Heating, ventilation and air conditioning. It may be defined as technology which provides both vehicular as well as indoor environmental comfort. It provides thermal comfort and also used in places where overheating of the equipment or object is not desired.

A data center is a dedicated space which is used to store computer systems and the associated components like telecommunication as well as storage system.

Now proper HVAC system is necessary in data center so as to ensure that the components or the computer system does not get over heated and gets damaged. Overheating of the storage system may lead to loss of valuable information and other important data.

You might be interested in
A 1020 CD steel shaft is to transmit 15 kW while rotating at 1750 rpm. Determine the minimum diameter for the shaft to provide a
vladimir2022 [97]

Answer:

diameter is 14 mm

Explanation:

given data

power = 15 kW

rotation N = 1750 rpm

factor of safety = 3

to find out

minimum diameter

solution

we will apply here power formula to find T that is

power = 2π×N×T / 60    .................1

put here value

15 ×10^{3} = 2π×1750×T / 60

so

T = 81.84 Nm

and

torsion = T / Z                        ..........2

here Z is section modulus i.e = πd³/ 16

so from equation 2

torsion = 81.84 / πd³/ 16

so torsion = 416.75 / / d³     .................3

so from shear stress theory

torsion = σy / factor of safety

so here σy = 530 for 1020 steel

so

torsion = σy / factor of safety

416.75 / d³ = 530 × 10^{6} / 3

so d = 0.0133 m

so diameter is 14 mm

3 0
4 years ago
Write a function "funthree" that will print a box of characters. The function will always receive as the first input argument th
stiv31 [10]

Answer: i8g7ieusgr7eytuu7esieso87 sugr7pi8y8hiuh9yehroe998 rydyh9 t9ry9 7 fdgerje 78re87es 7yehr87ehtu9hu7b puuhihugogi;ghi uhugyug fhglhfu fufbiup hughghuihu fhuihihiuhg uhfuhuig8fguh hguihfhjliigihfuhf;gjihgh hfuyt8uyiiohiodohi

Explanation: so first you are going to hyigfgegidii9thdf5dh8yy7 gdiuigp 87hgiuf 8yhijh gihoighhgd

4 0
4 years ago
1 kg of saturated steam at 1000 kPa is in a piston-cylinder and the massless cylinder is held in place by pins. The pins are rem
BARSIC [14]

Answer:

The final specific internal energy of the system is 1509.91 kJ/kg

Explanation:

The parameters given are;

Mass of steam = 1 kg

Initial pressure of saturated steam p₁ = 1000 kPa

Initial volume of steam, = V₁

Final volume of steam = 5 × V₁

Where condition of steam = saturated at 1000 kPa

Initial temperature, T₁  = 179.866 °C = 453.016 K

External pressure = Atmospheric = 60 kPa

Thermodynamic process = Adiabatic expansion

The specific heat ratio for steam = 1.33

Therefore, we have;

\dfrac{p_1}{p_2} = \left (\dfrac{V_2}{V_1} \right )^k = \left [\dfrac{T_1}{T_2}   \right ]^{\dfrac{k}{k-1}}

Adding the effect of the atmospheric pressure, we have;

p = 1000 + 60 = 1060

We therefore have;

\dfrac{1060}{p_2} = \left (\dfrac{5\cdot V_1}{V_1} \right )^{1.33}

P_2= \dfrac{1060}{5^{1.33}}  = 124.65 \ kPa

\left [\dfrac{V_2}{V_1} \right ]^k = \left [\dfrac{T_1}{T_2}   \right ]^{\dfrac{k}{k-1}}

\left [\dfrac{V_2}{V_1} \right ]^{k-1} = \left \dfrac{T_1}{T_2}   \right

5^{0.33} = \left \dfrac{T_1}{T_2}   \right

T₁/T₂ = 1.70083

T₁ = 1.70083·T₂

T₂ - T₁ = T₂ - 1.70083·T₂

Whereby the temperature of saturation T₁ = 179.866 °C = 453.016 K, we have;

T₂ = 453.016/1.70083 = 266.35 K

ΔU = 3×c_v×(T₂ - T₁)

c_v = cv for steam at 453.016 K = 1.926 + (453.016 -450)/(500-450)*(1.954-1.926) = 1.93 kJ/(kg·K)

cv for steam at 266.35 K = 1.86  kJ/(kg·K)

We use cv given by  (1.93 + 1.86)/2 = 1.895 kJ/(kg·K)

ΔU = 3×c_v×(T₂ - T₁) = 3*1.895 *(266.35 -453.016) = -1061.2 kJ/kg

The internal energy for steam = U_g = h_g -pV_g

h_g = 2777.12 kJ/kg

V_g = 0.194349 m³/kg

p = 1000 kPa

U_{g1} = 2777.12 - 0.194349 * 1060 = 2571.11 kJ/kg

The final specific internal energy of the system is therefore, U_{g1} + ΔU = 2571.11 - 1061.2 = 1509.91 kJ/kg.

3 0
3 years ago
Environmental assessments (EAs) are an important component of any civil engineering project. Delgado Engineering has been contra
Tom [10]

Answer:

Environmental assessments (EAs) are an important component of any civil engineering project. Delgado Engineering has been contracted to design and assess a   multibillion-dollar urban rail center in a city, which is divided in the middle by a river. The center will be built on a previously unused island in the center of the river. For each of the four types of civil engineers (construction engineer, geotechnical engineer, structural engineer, transportation engineer), explain why they should be involved in the project—or why they would not be relevant to the project—and what their role would be. Then describe how the EA would proceed, including what might be included in the environmental impact assessment process, such as the use of geographic information systems. Finally, explain what might be in the environmental impact statement or why you think there may be a finding of no significant impact.

 

6 0
3 years ago
You plan to install an active, liquid-based solar heating system for hot water. There are four candidate collector systems. Your
olchik [2.2K]

Solution:

The given formula,

x=F_{R} U_{L} \times \frac{P l}{F R_{1}} \times\left(T_{r e f}-\bar{T}_{a}\right) \Delta t \times \frac{A_{c}}{L}

y=F_{R}(\tau \alpha)_{n} x \frac{F_{R}^{\prime}}{F_{R}} \times \frac{(\bar{\tau} d)}{(T d)_{n}} \times \bar{H}_{T} N \times \frac{A C}{L}

\frac{x}{y}=\frac{ u_{L} \times\left(T_{x t}-\bar{T}_{a}\right) \times \Delta t}{\left(\tau_{x}\right)_{h} \times\left(\frac{\bar{\tau}_{d}}{\left.| \tau_{d}\right)_{n}}\right) \times \bar{H}+N}

From the table,

1) \(\quad x=2 \cdot 87, \quad y=0.96\)\\\(\frac{x}{y}=\frac{2187}{0.96}\)22895\\\\2) \(x=3 \cdot 466 \cdot y=6 \cdot 998\)\\\(\frac{x}{y}=\frac{3 \cdot 466}{0.898}\)\(=3 \cdot 4729\)

3\(x=3 \cdot 229, y=1 \cdot 08\)\\\(\frac{x}{x}=\frac{3 \cdot 229}{1 \cdot 08}\)\\=2.9898\)\\\\4) \(x=6.525, y=1.094\)\\\(\frac{x}{y}=\frac{5.625}{1.094}\)\\=5.0502

8 0
4 years ago
Other questions:
  • A heat pump with an ideal compressor operates between 0.2 MPa and 1 MPa. Refrigerant R134a flows through the system at a rate of
    15·1 answer
  • A gear box’s shaft is made of a hollow circular steel tube with allowable yield stress equal to σa????????o???? . The shaft is l
    7·1 answer
  • What range does creep occur in? A)Elastic, B)Plastic, C)Transition D)Temperature range from room to 200 degrees?
    14·1 answer
  • A distillation column with a partial reboiler and a total condenser is being used to separate a mixture of benzene, toluene, and
    6·1 answer
  • Technician A say's that The most two-stroke engines have a pressure type lubrication system. Technician be says that four stroke
    11·1 answer
  • A gas is compressed isothermally in a piston-cylinder assembly from 7.6 bar, 77 °C to 3.05 bar. Determine the work and heat tran
    11·1 answer
  • What could cause an increase in the demand for residential architects?
    12·1 answer
  • An electric sign takes 40A from a 240V supply. What current will it take if the voltage is raised to 300V. Help PLEASE!!!​
    13·1 answer
  • In order to tell whether the lubrication system is working properly, check the
    8·1 answer
  • Gray cast iron, with an ultimate tensile strength of 31 ksi and an ultimate compressive strength of 109 ksi, has the following s
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!